10个Python常用的损失函数及代码实现分享

目录
  • 什么是损失函数
  • 损失函数与度量指标
  • 为什么要用损失函数
  • 回归问题
    • 1、均方误差(MSE)
    • 2、平均绝对误差(MAE)
    • 3、均方根误差(RMSE)
    • 4、平均偏差误差(MBE)
    • 5、Huber损失
  • 二元分类
    • 6、最大似然损失(Likelihood Loss/LHL)
    • 7、二元交叉熵(BCE)
    • 8、Hinge Loss 和 Squared Hinge Loss (HL and SHL)
  • 多分类
    • 9、交叉熵(CE)
    • 10、Kullback-Leibler 散度 (KLD)

什么是损失函数

损失函数是一种衡量模型与数据吻合程度的算法。损失函数测量实际测量值和预测值之间差距的一种方式。损失函数的值越高预测就越错误,损失函数值越低则预测越接近真实值。对每个单独的观测(数据点)计算损失函数。将所有损失函数(loss function)的值取平均值的函数称为代价函数(cost function),更简单的理解就是损失函数是针对单个样本的,而代价函数是针对所有样本的。

损失函数与度量指标

一些损失函数也可以被用作评价指标。但是损失函数和度量指标(metrics)有不同的目的。虽然度量指标用于评估最终模型并比较不同模型的性能,但损失函数在模型构建阶段用作正在创建的模型的优化器。损失函数指导模型如何最小化误差。

也就是说损失函数是知道模型如何训练的,而度量指标是说明模型的表现的

为什么要用损失函数

由于损失函数测量的是预测值和实际值之间的差距,因此在训练模型时可以使用它们来指导模型的改进(通常的梯度下降法)。在构建模型的过程中,如果特征的权重发生了变化得到了更好或更差的预测,就需要利用损失函数来判断模型中特征的权重是否需要改变,以及改变的方向。

我们可以在机器学习中使用各种各样的损失函数,这取决于我们试图解决的问题的类型、数据质量和分布以及我们使用的算法,下图为我们整理的10个常见的损失函数:

回归问题

1、均方误差(MSE)

均方误差是指所有预测值和真实值之间的平方差,并将其平均值。常用于回归问题。

def MSE (y, y_predicted):
   sq_error = (y_predicted - y) ** 2
   sum_sq_error = np.sum(sq_error)
   mse = sum_sq_error/y.size
   return mse

2、平均绝对误差(MAE)

作为预测值和真实值之间的绝对差的平均值来计算的。当数据有异常值时,这是比均方误差更好的测量方法。

def MAE (y, y_predicted):
   error = y_predicted - y
   absolute_error = np.absolute(error)
   total_absolute_error = np.sum(absolute_error)
   mae = total_absolute_error/y.size
   return mae

3、均方根误差(RMSE)

这个损失函数是均方误差的平方根。如果我们不想惩罚更大的错误,这是一个理想的方法。

def RMSE (y, y_predicted):
   sq_error = (y_predicted - y) ** 2
   total_sq_error = np.sum(sq_error)
   mse = total_sq_error/y.size
   rmse = math.sqrt(mse)
   return rmse

4、平均偏差误差(MBE)

类似于平均绝对误差但不求绝对值。这个损失函数的缺点是负误差和正误差可以相互抵消,所以当研究人员知道误差只有一个方向时,应用它会更好。

def MBE (y, y_predicted):
   error = y_predicted -  y
   total_error = np.sum(error)
   mbe = total_error/y.size
   return mbe

5、Huber损失

Huber损失函数结合了平均绝对误差(MAE)和均方误差(MSE)的优点。这是因为Hubber损失是一个有两个分支的函数。一个分支应用于符合期望值的MAE,另一个分支应用于异常值。Hubber Loss一般函数为:

这里的

def hubber_loss (y, y_predicted, delta)
   delta = 1.35 * MAE
   y_size = y.size
   total_error = 0
   for i in range (y_size):
      erro = np.absolute(y_predicted[i] - y[i])
      if error < delta:
         hubber_error = (error * error) / 2
      else:
         hubber_error = (delta * error) / (0.5 * (delta * delta))
      total_error += hubber_error
   total_hubber_error = total_error/y.size
   return total_hubber_error

二元分类

6、最大似然损失(Likelihood Loss/LHL)

该损失函数主要用于二值分类问题。将每一个预测值的概率相乘,得到一个损失值,相关的代价函数是所有观测值的平均值。让我们用以下二元分类的示例为例,其中类别为[0]或[1]。如果输出概率等于或大于0.5,则预测类为[1],否则为[0]。输出概率的示例如下:

[0.3 , 0.7 , 0.8 , 0.5 , 0.6 , 0.4]

对应的预测类为:

[0 , 1 , 1 , 1 , 1 , 0]

而实际的类为:

[0 , 1 , 1 , 0 , 1 , 0]

现在将使用真实的类和输出概率来计算损失。如果真类是[1],我们使用输出概率,如果真类是[0],我们使用1-概率:

((1–0.3)+0.7+0.8+(1–0.5)+0.6+(1–0.4)) / 6 = 0.65

Python代码如下:

def LHL (y, y_predicted):
   likelihood_loss = (y * y_predicted) + ((1-y) * (y_predicted))
   total_likelihood_loss = np.sum(likelihood_loss)
   lhl = - total_likelihood_loss / y.size
   return lhl

7、二元交叉熵(BCE)

这个函数是对数的似然损失的修正。对数列的叠加可以惩罚那些非常自信但是却错误的预测。二元交叉熵损失函数的一般公式为:

让我们继续使用上面例子的值:

1.输出概率= [0.3、0.7、0.8、0.5、0.6、0.4]

2.实际的类= [0,1,1,0,1,0]

  • (0 . log (0.3) + (1–0) . log (1–0.3)) = 0.155
  • (1 . log(0.7) + (1–1) . log (0.3)) = 0.155
  • (1 . log(0.8) + (1–1) . log (0.2)) = 0.097
  • (0 . log (0.5) + (1–0) . log (1–0.5)) = 0.301
  • (1 . log(0.6) + (1–1) . log (0.4)) = 0.222
  • (0 . log (0.4) + (1–0) . log (1–0.4)) = 0.222

那么代价函数的结果为:

(0.155 + 0.155 + 0.097 + 0.301 + 0.222 + 0.222) / 6 = 0.192

Python的代码如下:

def BCE (y, y_predicted):
   ce_loss = y*(np.log(y_predicted))+(1-y)*(np.log(1-y_predicted))
   total_ce = np.sum(ce_loss)
   bce = - total_ce/y.size
   return bce

8、Hinge Loss 和 Squared Hinge Loss (HL and SHL)

Hinge Loss被翻译成铰链损失或者合页损失,这里还是以英文为准。

Hinge Loss主要用于支持向量机模型的评估。错误的预测和不太自信的正确预测都会受到惩罚。所以一般损失函数是:

这里的t是真实结果用[1]或[-1]表示。

使用Hinge Loss的类应该是[1]或-1。为了在Hinge loss函数中不被惩罚,一个观测不仅需要正确分类而且到超平面的距离应该大于margin(一个自信的正确预测)。如果我们想进一步惩罚更高的误差,我们可以用与MSE类似的方法平方Hinge损失,也就是Squared Hinge Loss。

如果你对SVM比较熟悉,应该还记得在SVM中,超平面的边缘(margin)越高,则某一预测就越有信心。如果这块不熟悉,则看看这个可视化的例子:

如果一个预测的结果是1.5,并且真正的类是[1],损失将是0(零),因为模型是高度自信的。

loss= Max (0,1 - 1* 1.5) = Max (0, -0.5) = 0

如果一个观测结果为0(0),则表示该观测处于边界(超平面),真实的类为[-1]。损失为1,模型既不正确也不错误,可信度很低。

如果一次观测结果为2,但分类错误(乘以[-1]),则距离为-2。损失是3(非常高),因为我们的模型对错误的决策非常有信心(这个是绝不能容忍的)。

python代码如下:

#Hinge Loss
def Hinge (y, y_predicted):
   hinge_loss = np.sum(max(0 , 1 - (y_predicted * y)))
   return hinge_loss 

#Squared Hinge Loss
def SqHinge (y, y_predicted):
   sq_hinge_loss = max (0 , 1 - (y_predicted * y)) ** 2
   total_sq_hinge_loss = np.sum(sq_hinge_loss)
   return total_sq_hinge_loss

多分类

9、交叉熵(CE)

在多分类中,我们使用与二元交叉熵类似的公式,但有一个额外的步骤。首先需要计算每一对[y, y_predicted]的损失,一般公式为:

如果我们有三个类,其中单个[y, y_predicted]对的输出是:

这里实际的类3(也就是值=1的部分),我们的模型对真正的类是3的信任度是0.7。计算这损失如下:

为了得到代价函数的值,我们需要计算所有单个配对的损失,然后将它们相加最后乘以[-1/样本数量]。代价函数由下式给出:

使用上面的例子,如果我们的第二对:

那么成本函数计算如下:

使用Python的代码示例可以更容易理解:

def CCE (y, y_predicted):
   cce_class = y * (np.log(y_predicted))
   sum_totalpair_cce = np.sum(cce_class)
   cce = - sum_totalpair_cce / y.size
   return cce

10、Kullback-Leibler 散度 (KLD)

又被简化称为KL散度,它类似于分类交叉熵,但考虑了观测值发生的概率。如果我们的类不平衡,它特别有用。

def KL (y, y_predicted):
   kl = y * (np.log(y / y_predicted))
   total_kl = np.sum(kl)
   return total_kl

到此这篇关于10个Python常用的损失函数及代码实现分享的文章就介绍到这了,更多相关Python损失函数内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • pytorch自定义loss损失函数

    目录 步骤1:添加自定义的类 步骤2:修改使用的loss函数 自定义loss的方法有很多,但是在博主查资料的时候发现有挺多写法会有问题,靠谱一点的方法是把loss作为一个pytorch的模块, 比如: class CustomLoss(nn.Module): # 注意继承 nn.Module     def __init__(self):         super(CustomLoss, self).__init__()     def forward(self, x, y):        

  • pytorch中常用的损失函数用法说明

    1. pytorch中常用的损失函数列举 pytorch中的nn模块提供了很多可以直接使用的loss函数, 比如MSELoss(), CrossEntropyLoss(), NLLLoss() 等 官方链接: https://pytorch.org/docs/stable/_modules/torch/nn/modules/loss.html pytorch中常用的损失函数 损失函数 名称 适用场景 torch.nn.MSELoss() 均方误差损失 回归 torch.nn.L1Loss() 平

  • Pytorch十九种损失函数的使用详解

    损失函数通过torch.nn包实现, 1 基本用法 criterion = LossCriterion() #构造函数有自己的参数 loss = criterion(x, y) #调用标准时也有参数 2 损失函数 2-1 L1范数损失 L1Loss 计算 output 和 target 之差的绝对值. torch.nn.L1Loss(reduction='mean') 参数: reduction-三个值,none: 不使用约简:mean:返回loss和的平均值: sum:返回loss的和.默认:

  • python人工智能tensorflow常见损失函数LOSS汇总

    目录 前言 运算公式 1 均方差函数 2 交叉熵函数 tensorflow中损失函数的表达 1 均方差函数 2 交叉熵函数 例子 1 均方差函数 2 交叉熵函数 前言 损失函数在机器学习中用于表示预测值与真实值之间的差距.一般而言,大多数机器学习模型都会通过一定的优化器来减小损失函数从而达到优化预测机器学习模型参数的目的.哦豁,损失函数这么必要,那都存在什么损失函数呢? 一般常用的损失函数是均方差函数和交叉熵函数. 运算公式 1 均方差函数 均方差函数主要用于评估回归模型的使用效果,其概念相对简

  • tensorflow2 自定义损失函数使用的隐藏坑

    Keras的核心原则是逐步揭示复杂性,可以在保持相应的高级便利性的同时,对操作细节进行更多控制.当我们要自定义fit中的训练算法时,可以重写模型中的train_step方法,然后调用fit来训练模型. 这里以tensorflow2官网中的例子来说明: import numpy as np import tensorflow as tf from tensorflow import keras x = np.random.random((1000, 32)) y = np.random.rando

  • 10个Python常用的损失函数及代码实现分享

    目录 什么是损失函数 损失函数与度量指标 为什么要用损失函数 回归问题 1.均方误差(MSE) 2.平均绝对误差(MAE) 3.均方根误差(RMSE) 4.平均偏差误差(MBE) 5.Huber损失 二元分类 6.最大似然损失(Likelihood Loss/LHL) 7.二元交叉熵(BCE) 8.Hinge Loss 和 Squared Hinge Loss (HL and SHL) 多分类 9.交叉熵(CE) 10.Kullback-Leibler 散度 (KLD) 什么是损失函数 损失函数

  • python常用排序算法的实现代码

    这篇文章主要介绍了python常用排序算法的实现代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 排序是计算机语言需要实现的基本算法之一,有序的数据结构会带来效率上的极大提升. 1.插入排序 插入排序默认当前被插入的序列是有序的,新元素插入到应该插入的位置,使得新序列仍然有序. def insertion_sort(old_list): n=len(old_list) k=0 for i in range(1,n): temp=old_lis

  • Python常用外部指令执行代码实例

    1.os.system() 阻塞 屏幕会打印命令的输出 返回命令结果码 # -*- encoding=utf-8 -*- import os if __name__ == '__main__': pass print('开始') ret1 = os.system('python') print('ret1:{}'.format(ret1)) ret2 = os.system('java -version') print('ret2:{}'.format(ret2)) print('结束') 运行

  • python使用PyV8执行javascript代码示例分享

    安装相应的库,我使用的是PyV8 需要注意的是里面写的function函数需要用()括起来 复制代码 代码如下: import PyV8 class Test(): def js(self): ctxt = PyV8.JSContext() ctxt.enter() func = ctxt.eval('''(function(){return '###'})''') print func() print '213' if __name__ == '__main__': crawler = Tes

  • python常用web框架简单性能测试结果分享(包含django、flask、bottle、tornado)

    测了一下django.flask.bottle.tornado 框架本身最简单的性能.对django的性能完全无语了. django.flask.bottle 均使用gunicorn+gevent启动,单进程,并且关闭DEBUG,请求均只返回一个字符串ok. tornado直接自己启动,其他内容一致. 测试软件为 siege,测试os为cenos6 64位,测试命令为: 复制代码 代码如下: siege -c 100 -r 100 -b http://127.0.0.1:5000/ django

  • Python 常用 PEP8 编码规范详解

    Python 常用 PEP8 编码规范 代码布局 缩进 每级缩进用4个空格. 括号中使用垂直隐式缩进或使用悬挂缩进. EXAMPLE: # (垂直隐式缩进)对准左括号 foo = long_function_name(var_one, var_two, var_three, var_four) # (悬挂缩进) 一般情况只需多一层缩进 foo = long_function_name( var_one, var_two, var_three, var_four) # (悬挂缩进) 但下面情况,

  • Python检测网络延迟的代码

    本文讲述了Python检测网络延迟的代码.分享给大家供大家参考,具体如下: #!/usr/bin/env python # coding: utf-8 # coding: cp950 ''''' Create Date: 2012-11-06 Version: 1.0 Description: Detection host survival Author: Victor QQ: 1409175531 ''' ''''' Please run the script with root ''' im

  • Python单链表简单实现代码

    本文实例讲述了Python单链表简单实现代码.分享给大家供大家参考,具体如下: 用Python模拟一下单链表,比较简单,初学者可以参考参考 #coding:utf-8 class Node(object): def __init__(self, data): self.data = data self.next = None class NodeList(object): def __init__(self, node): self.head = node self.head.next = No

  • Python多进程同步简单实现代码

    本文讲述了Python多进程同步简单实现代码.分享给大家供大家参考,具体如下: #encoding=utf8 from multiprocessing import Process, Lock def func(lock, a): lock.acquire() print a lock.release() if __name__ == '__main__': lock = Lock() workers = [] # 创建两个进程 for i in range(0, 2): p = Process

  • 常用的10个Python实用小技巧

    大家好,都说追女孩方法大于态度,学Python也是,今天就给大家分享的是我在用Python编写程序时常用的一些小技巧. 1.多次打印同一个字符 在Python中,不用特地写一个函数来重复打印同一个字符,直接使用Print就可以 tem = 'I Love Python ' print(tem * 3) I Love Python I Love Python I Love Python 2.在函数内部使用生成器 在写Python程序时,我们可以在函数内部直接使用生成器,这样可以使代码更简洁. su

随机推荐