Python如何遍历numpy数组

目录
  • Python遍历numpy数组
  • numpy中数组的遍历技巧分享
    • 1. 内置for循环
    • 2. flat迭代器
    • 3. nditer迭代器

Python遍历numpy数组

下面是示例代码:

import numpy as np
num = np.zeros([2, 3])
[rows, cols] = num.shape
print(rows, cols)
for i in range(rows):
    for j in range(cols):
        print(num[i, j])

运行结果:

2 3
0.0
0.0
0.0
0.0
0.0
0.0

numpy中数组的遍历技巧分享

在numpy中,当需要循环处理数组中的元素时,能用内置通函数实现的肯定首选通函数,只有当没有可用的通函数的情况下,再来手动进行遍历,遍历的方法有以下几种

1. 内置for循环

最基础的遍历方法还是for循环,用法如下

# 一维数组,和普通的python序列对象一致
>>> a
array([0, 1, 2, 3, 4])
>>> for i in a:
... print(i)
...
0
1
2
3
4
# 二维数组,每次遍历一行,以列表的形式返回一行的元素
>>> a = np.arange(12).reshape(3, 4)
>>> a
array([[ 0, 1, 2, 3],
       [ 4, 5, 6, 7],
       [ 8, 9, 10, 11]])

>>> for i in a:
... print(i)
...
[0 1 2 3]
[4 5 6 7]
[ 8 9 10 11]

for循环中得到的是对应元素的副本,所以通过上述方式只能访问,不能修改原始数组中的值。

2. flat迭代器

数组的flat属性返回的是数组的迭代器,通过这个迭代器,可以一层for循环就搞定多维数组的访问,用法如下

>>> a
array([[ 0, 1, 2, 3],
       [ 4, 5, 6, 7],
       [ 8, 9, 10, 11]])
>>> for i in a.flat:
...     print(i)
...
0
1
2
3
4
5
6
7
8
9
10
11

3. nditer迭代器

numpy中的nditer函数可以返回数组的迭代器,该迭代器的功能比flat更加强大和灵活,在遍历多维数组时,通过order参数可以指定遍历的顺序,C表示C语言的风格,优先处理行,F表示Fortran语言的风格,优先处理列,用法如下

>>> a
array([[ 0, 1, 2, 3],
       [ 4, 5, 6, 7],
       [ 8, 9, 10, 11]])
# 默认按行处理
>>> for i in np.nditer(a, order='C'):
... print(i)
...
0
1
2
3
4
5
6
7
8
9
10
11
# 按列处理
>>> for i in np.nditer(a, order='F'):
... print(i)
...
0
4
8
1
5
9
2
6
10
3
7
11

普通的遍历只能访问元素,而nditer可以允许我们在遍历的同时修改原始数组中的元素,只需要op_flags参数即可,用法如下

>>> a
array([[ 0, 1, 2, 3],
       [ 4, 5, 6, 7],
       [ 8, 9, 10, 11]])
>>> for i in np.nditer(a, op_flags = ['readwrite']):
... i *= 2
...
>>> a
array([[ 0, 2, 4, 6],
       [ 8, 10, 12, 14],
       [16, 18, 20, 22]])

>>> for i in np.nditer(a, op_flags = ['writeonly']):
... i += 2
...
>>> a
array([[ 2, 4, 6, 8],
       [10, 12, 14, 16],
       [18, 20, 22, 24]])

nditer更强大的功能在于广播遍历,通过内置的广播机制,可以实现两个数组的组合,用法如下

>>> a = np.arange(12).reshape(3, 4)
>>> a
array([[ 0, 1, 2, 3],
       [ 4, 5, 6, 7],
       [ 8, 9, 10, 11]])
>>> b = np.arange(4)
>>> b
array([0, 1, 2, 3])
>>> np.nditer([a, b])
<numpy.nditer object at 0x7f9db6b11170>
>>> for x,y in np.nditer([a,b]):
... print(x,y)
...
0 0
1 1
2 2
3 3
4 0
5 1
6 2
7 3
8 0
9 1
10 2
11 3
```
```
>>> b = np.arange(3).reshape(-1, 1)
>>> b
array([[0],
       [1],
       [2]])
>>> a
array([[ 0, 1, 2, 3],
       [ 4, 5, 6, 7],
       [ 8, 9, 10, 11]])
>>> for x,y in np.nditer([a,b]):
... print(x,y)
...
0 0
1 0
2 0
3 0
4 1
5 1
6 1
7 1
8 2
9 2
10 2
11 2

简单的元素访问直接使用for循环迭代数组即可,注意二维数组和一维数组的区别,nditer的3个特点对应不同的使用场景,当遇到对应的情况时,可以选择nditer来进行遍历。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python numpy库中数组遍历的方法

    1.对于一维数组,可以有: 2. 对于二维数组:考虑可将其看作为矩阵,故可以如下书写二重遍历 这里外层循环的是二维数组A的行,内层则是列 同时c的作用:不想用肉眼直接观察得到行列数,故用A.shape方法获得(2,6)的元组,然后改变数据类型为列表,然后直接使用. 3.对于三维数组,如: 有两个二维数组,二维数组中又有三个长度为4的数组.可以这样子循环: 又len(f) = 2, len(f[0]) = 3, len(f[0][0]) = 4;故可以再一次改进代码,这里就不写了. f[0]:三维

  • Python NumPy教程之遍历数组详解

    NumPy 包包含一个迭代器对象numpy.nditer.它是一个高效的多维迭代器对象,使用它可以迭代数组.使用 Python 的标准迭代器接口访问数组的每个元素. # 用于遍历数组的 Python 程序 import numpy as geek # 使用排列方法创建数组 a = geek.arange(12) # 具有 3 行和 4 列的形状数组 a = a.reshape(3,4) print('Original array is:') print(a) print() print('Mod

  • Python遍历numpy数组的实例

    在用python进行图像处理时,有时需要遍历numpy数组,下面是遍历数组的方法: [rows, cols] = num.shape for i in range(rows - 1): for j in range(cols-1): print(num[j, i]) 以上这篇Python遍历numpy数组的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们. 您可能感兴趣的文章: Python Numpy 数组的初始化和基本操作 python中numpy包使用教程之

  • python遍历数组的方法小结

    本文实例总结了python遍历数组的方法.分享给大家供大家参考.具体分析如下: 下面介绍两种遍历数组的方法,一种是直接通过for in 遍历数组,另外一种是通过rang函数先获得数组长度,在根据索引遍历数组 第一种,最常用的,通过for in遍历数组 colours = ["red","green","blue"] for colour in colours: print colour # red # green # blue 下面的方法可以先获

  • Python如何遍历numpy数组

    目录 Python遍历numpy数组 numpy中数组的遍历技巧分享 1. 内置for循环 2. flat迭代器 3. nditer迭代器 Python遍历numpy数组 下面是示例代码: import numpy as np num = np.zeros([2, 3]) [rows, cols] = num.shape print(rows, cols) for i in range(rows):     for j in range(cols):         print(num[i, j

  • python 实现将Numpy数组保存为图像

    第一种方案 可以使用scipy.misc,代码如下: import scipy.misc misc.imsave('out.jpg', image_array) 上面的scipy版本会标准化所有图像,以便min(数据)变成黑色,max(数据)变成白色.如果数据应该是精确的灰度级或准确的RGB通道,则解决方案为: import scipy.misc misc.toimage(image_array, cmin=0.0, cmax=...).save('outfile.jpg') 第二种方案 使用P

  • Python多进程共享numpy 数组的方法

    为什么要用numpy Python中提供了list容器,可以当作数组使用.但列表中的元素可以是任何对象,因此列表中保存的是对象的指针,这样一来,为了保存一个简单的列表[1,2,3].就需要三个指针和三个整数对象.对于数值运算来说,这种结构显然不够高效.     Python虽然也提供了array模块,但其只支持一维数组,不支持多维数组(在TensorFlow里面偏向于矩阵理解),也没有各种运算函数.因而不适合数值运算.     NumPy的出现弥补了这些不足. 引用:https://zhuanl

  • 详解python如何通过numpy数组处理图像

    如图,以该猫咪图片为例(忽略水印).将该文件命名为cat.jpg,并对其展开以下操作. 使用PIL库进行灰度处理 from PIL import Image import numpy as np # 读取图像,并转化为数组 im = np.array(Image.open("cat.jpg")) # 灰度处理公式 gray_narry = np.array([0.299, 0.587, 0.114]) x = np.dot(im, gray_narry) # 数组转图片 gray_ca

  • Python中的 Numpy 数组形状改变及索引切片

    目录 1.改变数组形状 2.索引和切片 1.改变数组形状 数组的shape属性返回一个元组,包括维度以及每个轴的元素数量,Numpy 还提供了一个reshape()方法,它可以改变数组的形状,返回一个新的数组. 例如: a = np.array([1,2,3,4,5,6,7,8]) 转换成二维数组: b = a.reshape((2,4)) 转换成三维数组: c = a.reshape((2,2,2)) 但是需要注意的是,修改后的数组元素个数与原数组元素个数必须是一致的,不一致会报错. 例如执行

  • Python中的numpy数组模块

    目录 一.numpy简介 1.numpy库作用: 2.NumPy 是一个运行速度非常快的数学库,主要用于数组计算,包含: 3.NumPy 应用 二.为什么用numpy 三.创建numpy数组 1.将列表转换创建numpy数组,可选择显式指定dtype 2.arange方式创建numpy数组 3.其他方式创建numpy数组 4.numpy或pandas中reshape()重塑形状(行列转换)的用法 4.numpy.random生成随机数 5. fromstring/fromfunction(了解)

  • Python快速转换numpy数组中Nan和Inf的方法实例说明

    在使用numpy数组的过程中时常会出现nan或者inf的元素,可能会造成数值计算时的一些错误.这里提供一个numpy库函数的用法,使nan和inf能够最简单地转换成相应的数值. numpy.nan_to_num(x): 使用0代替数组x中的nan元素,使用有限的数字代替inf元素 使用范例: >>>import numpy as np >>> a = np.array([[np.nan,np.inf],\ ... [-np.nan,-np.inf]]) >>

  • Python中优化NumPy包使用性能的教程

    NumPy是Python中众多科学软件包的基础.它提供了一个特殊的数据类型ndarray,其在向量计算上做了优化.这个对象是科学数值计算中大多数算法的核心. 相比于原生的Python,利用NumPy数组可以获得显著的性能加速,尤其是当你的计算遵循单指令多数据流(SIMD)范式时.然而,利用NumPy也有可能有意无意地写出未优化的代码. 在这篇文章中,我们将看到一些技巧,这些技巧可以帮助你编写高效的NumPy代码.我们首先看一下如何避免不必要的数组拷贝,以节省时间和内存.因此,我们将需要深入Num

  • 如何在向量化NumPy数组上进行移动窗口

    今天很有可能你已经做了一些使用滑动窗口(也称为移动窗口)的事情,而你甚至不知道它.例如:许多编辑算法都是基于移动窗口的. 在GIS中做地形分析的大多数地形栅格度量(坡度.坡向.山坡阴影等)都基于滑动窗口.很多情况下,对格式化为二维数组的数据进行分析时,都很有可能涉及到滑动窗口. 滑动窗口操作非常普遍,非常有用.它们也很容易在Python中实现.学习如何实现移动窗口将把你的数据分析和争论技能提升到一个新的水平. 什么是滑动窗? 下面的例子显示了一个3×3(3×3)滑动窗口.用红色标注的数组元素是目

随机推荐