Native Memory Tracking追踪区域示例分析

目录
  • Compiler
  • Internal
  • Symbol
  • Native Memory Tracking
  • Arena Chunk
  • Unknown

Compiler

Compiler 就是 JIT 编译器线程在编译 code 时本身所使用的内存。

查看 NMT 详情:

[0x0000ffff93e3acc0] Thread::allocate(unsigned long, bool, MemoryType)+0x348
[0x0000ffff9377a498] CompileBroker::make_compiler_thread(char const*, CompileQueue*, CompilerCounters*, AbstractCompiler*, Thread*)+0x120
[0x0000ffff9377ce98] CompileBroker::init_compiler_threads(int, int)+0x148
[0x0000ffff9377d400] CompileBroker::compilation_init()+0xc8
                             (malloc=37KB type=Thread #12)

跟踪调用链路:

InitializeJVM ->Threads::create_vm ->CompileBroker::compilation_init ->CompileBroker::init_compiler_threads ->CompileBroker::make_compiler_thread

发现最后 make_compiler_thread 的线程的个数是在 compilation_init() 中计算的:

# hotspot/src/share/vm/compiler/CompileBroker.cpp
void CompileBroker::compilation_init() {
  ......
  // No need to initialize compilation system if we do not use it.
  if (!UseCompiler) {
    return;
  }
#ifndef SHARK
  // Set the interface to the current compiler(s).
  int c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple);
  int c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization);
  ......
  // Start the CompilerThreads
  init_compiler_threads(c1_count, c2_count);
  ......
}

追溯 c1_count、c2_count 的计算逻辑,首先在 JVM 初始化的时候(Threads::create_vm -> init_globals -> compilationPolicy_init)要设置编译的策略 CompilationPolicy:

# hotspot/src/share/vm/runtime/arguments.cpp
void Arguments::set_tiered_flags() {
  // With tiered, set default policy to AdvancedThresholdPolicy, which is 3.
  if (FLAG_IS_DEFAULT(CompilationPolicyChoice)) {
    FLAG_SET_DEFAULT(CompilationPolicyChoice, 3);
  }
  ......
}
# hotspot/src/share/vm/runtime/compilationPolicy.cpp
// Determine compilation policy based on command line argument
void compilationPolicy_init() {
  CompilationPolicy::set_in_vm_startup(DelayCompilationDuringStartup);
  switch(CompilationPolicyChoice) {
  ......
  case 3:
#ifdef TIERED
    CompilationPolicy::set_policy(new AdvancedThresholdPolicy());
#else
    Unimplemented();
#endif
    break;
  ......
  CompilationPolicy::policy()->initialize();
}

此时我们默认开启了分层编译,所以 CompilationPolicyChoice 为 3 ,编译策略选用的是 AdvancedThresholdPolicy,查看相关源码(compilationPolicy_init -> AdvancedThresholdPolicy::initialize):

# hotspot/src/share/vm/runtime/advancedThresholdPolicy.cpp
void AdvancedThresholdPolicy::initialize() {
  // Turn on ergonomic compiler count selection
  if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
    FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
  }
  int count = CICompilerCount;
  if (CICompilerCountPerCPU) {
    // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
    int log_cpu = log2_int(os::active_processor_count());
    int loglog_cpu = log2_int(MAX2(log_cpu, 1));
    count = MAX2(log_cpu * loglog_cpu, 1) * 3 / 2;
  }
  set_c1_count(MAX2(count / 3, 1));
  set_c2_count(MAX2(count - c1_count(), 1));
  ......
}

我们可以发现,在未手动设置 -XX:CICompilerCountPerCPU 和 -XX:CICompilerCount 这两个参数的时候,JVM 会启动 CICompilerCountPerCPU ,启动编译线程的数目会根据 CPU 数重新计算而不再使用默认的 CICompilerCount 的值(3),计算公式通常情况下为 log n * log log n * 1.5(log 以 2 为底),此时笔者使用的机器有 64 个 CPU,经过计算得出编译线程的数目为 18。计算出编译线程的总数目之后,再按 1:2 的比例分别分配给 C1、C2,即我们上文所求的 c1_count、c2_count。

使用 jinfo -flag CICompilerCount 来验证此时 JVM 进程的编译线程数目:

jinfo -flag CICompilerCount
-XX:CICompilerCount=18

所以我们可以通过显式的设置 -XX:CICompilerCount 来控制 JVM 开启编译线程的数目,从而限制 Compiler 部分所使用的内存(当然这部分内存比较小)。

我们还可以通过 -XX:-TieredCompilation 关闭分层编译来降低内存使用,当然是否关闭分层编译取决于实际的业务需求,节省的这点内存实在微乎其微。

编译线程也是线程,所以我们还可以通过 -XX:VMThreadStackSize 设置一个更小的值来节省此部分内存,但是削减虚拟机线程的堆栈大小是危险的操作,并不建议去因为此设置这个参数。

Internal

Internal 包含命令行解析器使用的内存、JVMTI、PerfData 以及 Unsafe 分配的内存等等。

其中命令行解释器就是在初始化创建虚拟机时对 JVM 的命令行参数加以解析并执行相应的操作,如对参数 -XX:NativeMemoryTracking=detail 进行解析。

JVMTI(JVM Tool Interface)是开发和监视 JVM 所使用的编程接口。它提供了一些方法去检查 JVM 状态和控制 JVM 的运行,详情可以查看 JVMTI官方文档 [1]。

PerfData 是 JVM 中用来记录一些指标数据的文件,如果开启 -XX:+UsePerfData(默认开启),JVM 会通过 mmap 的方式(即使用上文中提到的 os::reserve_memory 和 os::commit_memory)去映射到 {tmpdir}/hsperfdata_/pid 文件中,jstat 通过读取 PerfData 中的数据来展示 JVM 进程中的各种指标信息.

需要注意的是, {tmpdir}/hsperfdata_/pid{tmpdir}/.java_pid 并不是一个东西,后者是在 Attach 机制中用来通讯的,类似一种 Unix Domain Socket 的思想,不过真正的 Unix Domain Socket(JEP380 [2])在 JDK16 中才支持。

我们在操作 nio 时经常使用 ByteBuffer ,其中 ByteBuffer.allocateDirect / DirectByteBuffer 会通过 unsafe.allocateMemory 的方式来 malloc 分配 naive memory,虽然 DirectByteBuffer 本身还是存放于 Heap 堆中,但是它对应的 address 映射的却是分配在堆外内存的 native memory,NMT 会将 Unsafe_AllocateMemory 方式分配的内存记录在 Internal 之中(jstat 也是通过 ByteBuffer 的方式来使用 PerfData)。

需要注意的是,Unsafe_AllocateMemory 分配的内存在 JDK11之前,在 NMT 中都属于 Internal,但是在 JDK11 之后被 NMT 归属到 Other 中。

例如相同 ByteBuffer.allocateDirect 在 JDK11 中进行追踪:[0x0000ffff8c0b4a60] Unsafe_AllocateMemory0+0x60``[0x0000ffff6b822fbc] (malloc=393218KB type=Other #3)

简单查看下相关源码:

# ByteBuffer.java
    public static ByteBuffer allocateDirect(int capacity) {
        return new DirectByteBuffer(capacity);
    }
# DirectByteBuffer.java
  DirectByteBuffer(int cap) {                   // package-private
        ......
        long base = 0;
        try {
            base = unsafe.allocateMemory(size);
        }
       ......
# Unsafe.java
  public native long allocateMemory(long bytes);
# hotspot/src/share/vm/prims/unsafe.cpp
UNSAFE_ENTRY(jlong, Unsafe_AllocateMemory(JNIEnv *env, jobject unsafe, jlong size))
  UnsafeWrapper("Unsafe_AllocateMemory");
  size_t sz = (size_t)size;
  ......
  sz = round_to(sz, HeapWordSize);
  void* x = os::malloc(sz, mtInternal);
  ......
UNSAFE_END

一般情况下,命令行解释器、JVMTI等方式不会申请太大的内存,我们需要注意的是通过 Unsafe_AllocateMemory 方式申请的堆外内存(如业务使用了 Netty ),可以通过一个简单的示例来进行验证

这个示例的 JVM 启动参数为:-Xmx1G -Xms1G -XX:+UseG1GC -XX:MaxMetaspaceSize=256M -XX:ReservedCodeCacheSize=256M -XX:NativeMemoryTracking=detail(去除了 -XX:MaxDirectMemorySize=256M 的限制):

import java.nio.ByteBuffer;
public class ByteBufferTest {
    private static int _1M = 1024 * 1024;
    private static ByteBuffer allocateBuffer_1 = ByteBuffer.allocateDirect(128 * _1M);
    private static ByteBuffer allocateBuffer_2 = ByteBuffer.allocateDirect(256 * _1M);
    public static void main(String[] args) throws Exception {
        System.out.println("MaxDirect memory: " + sun.misc.VM.maxDirectMemory() + " bytes");
        System.out.println("Direct allocation: " + (allocateBuffer_1.capacity() + allocateBuffer_2.capacity()) + " bytes");
        System.out.println("Native memory used: " + sun.misc.SharedSecrets.getJavaNioAccess().getDirectBufferPool().getMemoryUsed() + " bytes");
        Thread.sleep(6000000);
    }
}

查看输出:

MaxDirect memory: 1073741824 bytes
Direct allocation: 402653184 bytes
Native memory used: 402653184 bytes

查看 NMT 详情:

-                  Internal (reserved=405202KB, committed=405202KB)
                            (malloc=405170KB #3605)
                            (mmap: reserved=32KB, committed=32KB)
                   ......
                   [0x0000ffffbb599190] Unsafe_AllocateMemory+0x1c0
                   [0x0000ffffa40157a8]
                             (malloc=393216KB type=Internal #2)
                   ......
                   [0x0000ffffbb04b3f8] GenericGrowableArray::raw_allocate(int)+0x188
                   [0x0000ffffbb4339d8] PerfDataManager::add_item(PerfData*, bool) [clone .constprop.16]+0x108
                   [0x0000ffffbb434118] PerfDataManager::create_string_variable(CounterNS, char const*, int, char const*, Thread*)+0x178
                   [0x0000ffffbae9d400] CompilerCounters::CompilerCounters(char const*, int, Thread*) [clone .part.78]+0xb0
                             (malloc=3KB type=Internal #1)
                   ......

可以发现,我们在代码中使用 ByteBuffer.allocateDirect(内部也是使用 new DirectByteBuffer(capacity))的方式,即 Unsafe_AllocateMemory 申请的堆外内存被 NMT 以 Internal 的方式记录了下来:(128 M + 256 M)= 384 M = 393216 KB = 402653184 Bytes。

当然我们可以使用参数 -XX:MaxDirectMemorySize 来限制 Direct Buffer 申请的最大内存。

Symbol

Symbol 为 JVM 中的符号表所使用的内存,HotSpot中符号表主要有两种:SymbolTableStringTable

大家都知道 Java 的类在编译之后会生成 Constant pool 常量池,常量池中会有很多的字符串常量,HotSpot 出于节省内存的考虑,往往会将这些字符串常量作为一个 Symbol 对象存入一个 HashTable 的表结构中即 SymbolTable,如果该字符串可以在 SymbolTable 中 lookup(SymbolTable::lookup)到,那么就会重用该字符串,如果找不到才会创建新的 Symbol(SymbolTable::new_symbol)。

当然除了 SymbolTable,还有它的双胞胎兄弟 StringTable(StringTable 结构与 SymbolTable 基本是一致的,都是 HashTable 的结构),即我们常说的字符串常量池。平时做业务开发和 StringTable 打交道会更多一些,HotSpot 也是基于节省内存的考虑为我们提供了 StringTable,我们可以通过 String.intern 的方式将字符串放入 StringTable 中来重用字符串。

编写一个简单的示例:

public class StringTableTest {
    public static void main(String[] args) throws Exception {
        while (true){
            String str = new String("StringTestData_" + System.currentTimeMillis());
            str.intern();
        }
    }
}

启动程序后我们可以使用 jcmd VM.native_memory baseline 来创建一个基线方便对比,稍作等待后再使用 jcmd VM.native_memory summary.diff/detail.diff 与创建的基线作对比,对比后我们可以发现:

Total: reserved=2831553KB +20095KB, committed=1515457KB +20095KB
......
-                    Symbol (reserved=18991KB +17144KB, committed=18991KB +17144KB)
                            (malloc=18504KB +17144KB #2307 +2143)
                            (arena=488KB #1)
......
[0x0000ffffa2aef4a8] BasicHashtable<(MemoryType)9>::new_entry(unsigned int)+0x1a0
[0x0000ffffa2aef558] Hashtable::new_entry(unsigned int, oopDesc*)+0x28
[0x0000ffffa2fbff78] StringTable::basic_add(int, Handle, unsigned short*, int, unsigned int, Thread*)+0xe0
[0x0000ffffa2fc0548] StringTable::intern(Handle, unsigned short*, int, Thread*)+0x1a0
                             (malloc=17592KB type=Symbol +17144KB #2199 +2143)
......

JVM 进程这段时间内存一共增长了 20095KB,其中绝大部分都是 Symbol 申请的内存(17144KB),查看具体的申请信息正是 StringTable::intern 在不断的申请内存。

如果我们的程序错误的使用 String.intern() 或者 JDK intern 相关 BUG 导致了内存异常,可以通过这种方式轻松协助定位出来。

需要注意的是,虚拟机提供的参数 -XX:StringTableSize 并不是来限制 StringTable 最大申请的内存大小的,而是用来限制 StringTable 的表的长度的,我们加上 -XX:StringTableSize=10M 来重新启动 JVM 进程,一段时间后查看 NMT 追踪情况:

-                    Symbol (reserved=100859KB +17416KB, committed=100859KB +17416KB)
                            (malloc=100371KB +17416KB #2359 +2177)
                            (arena=488KB #1)
......
[0x0000ffffa30c14a8] BasicHashtable<(MemoryType)9>::new_entry(unsigned int)+0x1a0
[0x0000ffffa30c1558] Hashtable::new_entry(unsigned int, oopDesc*)+0x28
[0x0000ffffa3591f78] StringTable::basic_add(int, Handle, unsigned short*, int, unsigned int, Thread*)+0xe0
[0x0000ffffa3592548] StringTable::intern(Handle, unsigned short*, int, Thread*)+0x1a0
                             (malloc=18008KB type=Symbol +17416KB #2251 +2177)

可以发现 StringTable 的大小是超过 10M 的,查看该参数的作用:

# hotsopt/src/share/vm/classfile/symnolTable.hpp
  StringTable() : RehashableHashtable((int)StringTableSize,
                              sizeof (HashtableEntry)) {}
  StringTable(HashtableBucket* t, int number_of_entries)
    : RehashableHashtable((int)StringTableSize, sizeof (HashtableEntry), t,
                     number_of_entries) {}

因为 StringTable 在 HotSpot 中是以 HashTable 的形式存储的,所以 -XX:StringTableSize 参数设置的其实是 HashTable 的长度,如果该值设置的过小的话,即使 HashTable 进行 rehash,hash 冲突也会十分频繁,会造成性能劣化并有可能导致进入 SafePoint 的时间增长。如果发生这种情况,可以调大该值。

  • -XX:StringTableSize 在 32 位系统默认为 1009、64 位默认为 60013 :const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
  • G1中可以使用 -XX:+UseStringDeduplication 参数来开启字符串自动去重功能(默认关闭),并使用 -XX:StringDeduplicationAgeThreshold 来控制字符串参与去重的 GC 年龄阈值。
  • 与 -XX:StringTableSize 同理,我们可以通过 -XX:SymbolTableSize 来控制 SymbolTable 表的长度。

如果我们使用的是 JDK11 之后的 NMT,我们可以直接通过命令 jcmd VM.stringtablejcmd VM.symboltable 来查看两者的使用情况:

StringTable statistics:
Number of buckets       :  16777216 = 134217728 bytes, each 8
Number of entries       :     39703 =    635248 bytes, each 16
Number of literals      :     39703 =   2849304 bytes, avg  71.765
Total footprsize_t         :           = 137702280 bytes
Average bucket size     :     0.002
Variance of bucket size :     0.002
Std. dev. of bucket size:     0.049
Maximum bucket size     :         2
SymbolTable statistics:
Number of buckets       :     20011 =    160088 bytes, each 8
Number of entries       :     20133 =    483192 bytes, each 24
Number of literals      :     20133 =    753832 bytes, avg  37.443
Total footprint         :           =   1397112 bytes
Average bucket size     :     1.006
Variance of bucket size :     1.013
Std. dev. of bucket size:     1.006
Maximum bucket size     :         9

Native Memory Tracking

Native Memory Tracking 使用的内存就是 JVM 进程开启 NMT 功能后,NMT 功能自身所申请的内存。

查看源码会发现,JVM 会在 MemTracker::init() 初始化的时候,使用 tracking_level() -> init_tracking_level() 获取我们设定的 tracking_level 追踪等级(如:summary、detail),然后将获取到的 level 分别传入 MallocTracker::initialize(level) 与 VirtualMemoryTracker::initialize(level) 进行判断,只有 level >= summary 的情况下,虚拟机才会分配 NMT 自身所用到的内存,如:VirtualMemoryTracker、MallocMemorySummary、MallocSiteTable(detail 时才会创建) 等来记录 NMT 追踪的各种数据。

# /hotspot/src/share/vm/services/memTracker.cpp
void MemTracker::init() {
  NMT_TrackingLevel level = tracking_level();
  ......
}
# /hotspot/src/share/vm/services/memTracker.hpp
static inline NMT_TrackingLevel tracking_level() {
    if (_tracking_level == NMT_unknown) {
      // No fencing is needed here, since JVM is in single-threaded
      // mode.
      _tracking_level = init_tracking_level();
      _cmdline_tracking_level = _tracking_level;
    }
    return _tracking_level;
  }
# /hotspot/src/share/vm/services/memTracker.cpp
NMT_TrackingLevel MemTracker::init_tracking_level() {
  NMT_TrackingLevel level = NMT_off;
  ......
  if (os::getenv(buf, nmt_option, sizeof(nmt_option))) {
    if (strcmp(nmt_option, "summary") == 0) {
      level = NMT_summary;
    } else if (strcmp(nmt_option, "detail") == 0) {
#if PLATFORM_NATIVE_STACK_WALKING_SUPPORTED
      level = NMT_detail;
#else
      level = NMT_summary;
#endif // PLATFORM_NATIVE_STACK_WALKING_SUPPORTED
    }
   ......
  }
  ......
  if (!MallocTracker::initialize(level) ||
      !VirtualMemoryTracker::initialize(level)) {
    level = NMT_off;
  }
  return level;
}
# /hotspot/src/share/vm/services/memTracker.cpp
bool MallocTracker::initialize(NMT_TrackingLevel level) {
  if (level >= NMT_summary) {
    MallocMemorySummary::initialize();
  }
  if (level == NMT_detail) {
    return MallocSiteTable::initialize();
  }
  return true;
}
void MallocMemorySummary::initialize() {
  assert(sizeof(_snapshot) >= sizeof(MallocMemorySnapshot), "Sanity Check");
  // Uses placement new operator to initialize static area.
  ::new ((void*)_snapshot)MallocMemorySnapshot();
}
#
bool VirtualMemoryTracker::initialize(NMT_TrackingLevel level) {
  if (level >= NMT_summary) {
    VirtualMemorySummary::initialize();
  }
  return true;
}

我们执行的 jcmd VM.native_memory summary/detail 命令,就会使用 NMTDCmd::report 方法来根据等级的不同获取不同的数据:

summary 时使用 MemSummaryReporter::report() 获取 VirtualMemoryTracker、MallocMemorySummary 等储存的数据;

detail 时使用 MemDetailReporter::report() 获取 VirtualMemoryTracker、MallocMemorySummary、MallocSiteTable 等储存的数据。

hotspot/src/share/vm/services/nmtDCmd.cpp

void NMTDCmd::execute(DCmdSource source, TRAPS) { ...... if (_summary.value()) { report(true, scale_unit); } else if (_detail.value()) { if (!check_detail_tracking_level(output())) { return; } report(false, scale_unit); } ...... }

void NMTDCmd::report(bool summaryOnly, size_t scale_unit) { MemBaseline baseline; if (baseline.baseline(summaryOnly)) { if (summaryOnly) { MemSummaryReporter rpt(baseline, output(), scale_unit); rpt.report(); } else { MemDetailReporter rpt(baseline, output(), scale_unit); rpt.report(); } } }

一般 NMT 自身占用的内存是比较小的,不需要太过关心。

Arena Chunk

Arena 是 JVM 分配的一些 Chunk(内存块),当退出作用域或离开代码区域时,内存将从这些 Chunk 中释放出来。然后这些 Chunk 就可以在其他子系统中重用. 需要注意的是,此时统计的 Arena 与 Chunk ,是 HotSpot 自己定义的 Arena、Chunk,而不是 Glibc 中相关的 Arena 与 Chunk 的概念。

我们会发现 NMT 详情中会有很多关于 Arena Chunk 的分配信息都是:

[0x0000ffff935906e0] ChunkPool::allocate(unsigned long, AllocFailStrategy::AllocFailEnum)+0x158
[0x0000ffff9358ec14] Arena::Arena(MemoryType, unsigned long)+0x18c
......

JVM 中通过 ChunkPool 来管理重用这些 Chunk,比如我们在创建线程时:

# /hotspot/src/share/vm/runtime/thread.cpp
Thread::Thread() {
  ......
  set_resource_area(new (mtThread)ResourceArea());
  ......
  set_handle_area(new (mtThread) HandleArea(NULL));
  ......

其中 ResourceArea 属于给线程分配的一个资源空间,一般 ResourceObj 都存放于此(如 C1/C2 优化时需要访问的运行时信息);HandleArea 则用来存放线程所持有的句柄(handle),使用句柄来关联使用的对象。这两者都会去申请 Arena,而 Arena 则会通过 ChunkPool::allocate 来申请一个新的 Chunk 内存块。除此之外,JVM 进程用到 Arena 的地方还有非常多,比如 JMX、OopMap 等等一些相关的操作都会用到 ChunkPool。

眼尖的读者可能会注意到上文中提到,通常情况下会通过 ChunkPool::allocate 的方式来申请 Chunk 内存块。是的,其实除了 ChunkPool::allocate 的方式, JVM 中还存在另外一种申请 Arena Chunk 的方式,即直接借助 Glibc 的 malloc 来申请内存,JVM 为我们提供了相关的控制参数 UseMallocOnly:

develop(bool, UseMallocOnly, false,                                       \
          "Use only malloc/free for allocation (no resource area/arena)")

我们可以发现这个参数是一个 develop 的参数,一般情况下我们是使用不到的,因为 VM option 'UseMallocOnly' is develop and is available only in debug version of VM,即我们只能在 debug 版本的 JVM 中才能开启该参数。

这里有的读者可能会有一个疑问,即是不是可以通过使用参数 -XX:+IgnoreUnrecognizedVMOptions(该参数开启之后可以允许 JVM 使用一些在 release 版本中不被允许使用的参数)的方式,在正常 release 版本的 JVM 中使用 UseMallocOnly 参数,很遗憾虽然我们可以通过这种方式开启 UseMallocOnly,但是实际上 UseMallocOnly 却不会生效,因为在源码中其逻辑如下:

# hotspot/src/share/vm/memory/allocation.hpp
void* Amalloc(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
    assert(is_power_of_2(ARENA_AMALLOC_ALIGNMENT) , "should be a power of 2");
    x = ARENA_ALIGN(x);
    //debug 版本限制
    debug_only(if (UseMallocOnly) return malloc(x);)
    if (!check_for_overflow(x, "Arena::Amalloc", alloc_failmode))
      return NULL;
    NOT_PRODUCT(inc_bytes_allocated(x);)
    if (_hwm + x > _max) {
      return grow(x, alloc_failmode);
    } else {
      char *old = _hwm;
      _hwm += x;
      return old;
    }
  }

可以发现,即使我们成功开启了 UseMallocOnly,也只有在 debug 版本(debug_only)的 JVM 中才能使用 malloc 的方式分配内存。

我们可以对比下,使用正常版本(release)的 JVM 添加 -XX:+IgnoreUnrecognizedVMOptions -XX:+UseMallocOnly 启动参数的 NMT 相关日志与使用 debug(fastdebug/slowdebug)版本的 JVM 添加 -XX:+UseMallocOnly 启动参数的 NMT 相关日志:

# 正常 JVM ,启动参数添加:-XX:+IgnoreUnrecognizedVMOptions -XX:+UseMallocOnly
......
[0x0000ffffb7d16968] ChunkPool::allocate(unsigned long, AllocFailStrategy::AllocFailEnum)+0x158
[0x0000ffffb7d15f58] Arena::grow(unsigned long, AllocFailStrategy::AllocFailEnum)+0x50
[0x0000ffffb7fc4888] Dict::Dict(int (*)(void const*, void const*), int (*)(void const*), Arena*, int)+0x138
[0x0000ffffb85e5968] Type::Initialize_shared(Compile*)+0xb0
                             (malloc=32KB type=Arena Chunk #1)
......
# debug版本 JVM ,启动参数添加:-XX:+UseMallocOnly
......
[0x0000ffff8dfae910] Arena::malloc(unsigned long)+0x74
[0x0000ffff8e2cb3b8] Arena::Amalloc_4(unsigned long, AllocFailStrategy::AllocFailEnum)+0x70
[0x0000ffff8e2c9d5c] Dict::Dict(int (*)(void const*, void const*), int (*)(void const*), Arena*, int)+0x19c
[0x0000ffff8e97c3d0] Type::Initialize_shared(Compile*)+0x9c
                             (malloc=5KB type=Arena Chunk #1)
......

我们可以清晰地观察到调用链的不同,即前者还是使用 ChunkPool::allocate 的方式来申请内存,而后者则使用 Arena::malloc 的方式来申请内存,查看 Arena::malloc 代码:

# hotspot/src/share/vm/memory/allocation.cpp
void* Arena::malloc(size_t size) {
  assert(UseMallocOnly, "shouldn't call");
  // use malloc, but save pointer in res. area for later freeing
  char** save = (char**)internal_malloc_4(sizeof(char*));
  return (*save = (char*)os::malloc(size, mtChunk));
}

可以发现代码中通过 os::malloc 的方式来分配内存,同理释放内存时直接通过 os::free 即可,如 UseMallocOnly 中释放内存的相关代码:

# hotspot/src/share/vm/memory/allocation.cpp
// debugging code
inline void Arena::free_all(char** start, char** end) {
  for (char** p = start; p < end; p++) if (*p) os::free(*p);
}

虽然 JVM 为我们提供了两种方式来管理 Arena Chunk 的内存:

  • 通过 ChunkPool 池化交由 JVM 自己管理;
  • 直接通过 Glibc 的 malloc/free 来进行管理。

但是通常意义下我们只会用到第一种方式,并且一般 ChunkPool 管理的对象都比较小,整体来看 Arena Chunk 这块内存的使用不会很多。

Unknown

Unknown 则是下面几种情况

  • 当内存类别无法确定时;
  • 当 Arena 用作堆栈或值对象时;
  • 当类型信息尚未到达时。

NMT 无法追踪的内存

需要注意的是,NMT 只能跟踪 JVM 代码的内存分配情况,对于非 JVM 的内存分配是无法追踪到的。

  • 使用 JNI 调用的一些第三方 native code 申请的内存,比如使用 System.Loadlibrary 加载的一些库。
  • 标准的 Java Class Library,典型的,如文件流等相关操作(如:Files.list、ZipInputStream 和 DirectoryStream 等)。

可以使用操作系统的内存工具等协助排查,或者使用 LD_PRELOAD malloc 函数的 hook/jemalloc/google-perftools(tcmalloc) 来代替 Glibc 的 malloc,协助追踪内存的分配。

由于篇幅有限,将在下篇文章给大家分享“使用 NMT 协助排查内存问题的案例”,敬请期待!

参考

docs.oracle.com/javase/8/do…

openjdk.org/jeps/380

以上就是Native Memory Tracking追踪区域示例分析的详细内容,更多关于Native Memory Tracking追踪区域的资料请关注我们其它相关文章!

(0)

相关推荐

  • Android性能优化之plt hook与native线程监控详解

    目录 背景 native 线程创建 PLT PLT Hook xhook bhook plt hook总结 背景 我们在android超级优化-线程监控与线程统一可以知道,我们能够通过asm插桩的方式,进行了线程的监控与线程的统一,通过一系列的黑科技,我们能够将项目中的线程控制在一个非常可观的水平,但是这个只局限在java层线程的控制,如果我们项目中存在着native库,或者存在着很多其他so库,那么native层的线程我们就没办法通过ASM或者其他字节码手段去监控了,但是并不是就没有办法,还有

  • 详解React Native项目中启用Hermes引擎

    目录 引言 一.启用 Hermes 引擎 1.1 Android 1.2 iOS 二.Hermes 引擎使用 2.1 检查 Hermes 引擎是否启用 2.2 绑定Hermes 2.3 使用DevTools在Hermes上调试JS 引言 目前,最新版本的React Native(0.70.0及以上版本)已经默认开启了Hermes引擎.而Hermes则是专门针对React Native应用而优化的全新JavaScript引擎,启用Hermes引擎可以优化启动时间,减少内存占用以及空间占用. 一.启

  • 详解React Native中如何使用自定义的引用路径

    目录 RN的相对路径地狱 RN的自定义路径需要的依赖 解决自定义引用路径导致的eslint报错问题 RN的相对路径地狱 我刚接触RN时,就发现所有的demo中给出来的路径都是相对路径,我自己的练习项目中想改成自定义的绝对路径,但是发现并没有我做前端时熟悉的webpack.config.js,所以也就不知道该怎么改了.伴随着RN的学习和开发练习,我的代码也变得越来越多,越来越复杂,我逐渐发现RN的相对路径越来越麻烦,比如我把某个文件移动到另一个不同深度的文件夹中,那么就需要把所有引用这个文件的地方

  • React Native系列之Recyclerlistview使用详解

    目录 recyclerlistview的介绍与使用 1.安装 2.概述和功能 3. RecyclerListView的使用 1.dataProvider 2.LayoutProvider 3.rowRenderer 4.onEndReached 5.onEndReachedThreshold 6.extendedState 7.scrollViewProps RecyclerListView所有属性 recyclerlistview的介绍与使用 1.安装 npm install --save r

  • 新建的React Native就遇到vscode报警解除方法

    目录 新建的RN项目有警告 直接删除vscode报警的部分 禁掉vscode内置的TypeScript插件 引入Flow Language Support解除报警 新建的RN项目有警告 我相信AwesomeProject是很多人的第一个RN项目,包括我在内. npx react-native init AwesomeProject 但是当利用RN的脚手架搭建起来后,在vscode里打开项目,直接就会遇到如下这个vscode的警告: 'import type' declarations can o

  • Native Memory Tracking追踪区域示例分析

    目录 Compiler Internal Symbol Native Memory Tracking Arena Chunk Unknown Compiler Compiler 就是 JIT 编译器线程在编译 code 时本身所使用的内存. 查看 NMT 详情: [0x0000ffff93e3acc0] Thread::allocate(unsigned long, bool, MemoryType)+0x348 [0x0000ffff9377a498] CompileBroker::make_

  • FreeRTOS进阶之队列示例分析

    目录 FreeRTOS提供了多种任务间通讯方式,包括:任务通知(版本V8.2以及以上版本)队列二进制信号量计数信号量互斥量递归互斥量      其中,二进制信号量.计数信号量.互斥量和递归互斥量都是使用队列来实现的,因此掌握队列的运行机制,是很有必要的.      队列是FreeRTOS主要的任务间通讯方式.可以在任务与任务间.中断和任务间传送信息.发送到队列的消息是通过拷贝实现的,这意味着队列存储的数据是原数据,而不是原数据的引用.先看一下队列的数据结构: typedef struct Que

  • Android事件分发机制示例分析

    Android事件类型 public boolean onTouchEvent(MotionEvent event) { switch (event.getAction()) { case MotionEvent.ACTION_DOWN: break; case MotionEvent.ACTION_MOVE: break; case MotionEvent.ACTION_UP: break; case MotionEvent.ACTION_CANCEL: break; } return tru

  • C++ Boost Xpressive示例分析使用

    目录 一.综述 二.应用示例 2.1 示例 9.1 2.2 示例 9.2 2.3 示例 9.3 2.4 示例 9.4 一.综述 与 Boost.Regex 一样,Boost.Xpressive 提供了使用正则表达式搜索字符串的函数.然而,Boost.Xpressive 使得将正则表达式写成 C++ 代码而不是字符串成为可能.这使得在编译时检查正则表达式是否有效成为可能. 只有 Boost.Regex 被合并到 C++11 中.标准库不支持将正则表达式编写为 C++ 代码. boost/xpres

  • js的一些潜在规则示例分析

    目录 宏任务和微任务 语句的执行过程 (Completion Record ) 文法 词法 语句是否需要加分号 no LineTerminator here规则 脚本和模块 声明提升 解析HTML DOM API 节点 遍历 Range DOM中的位置 全局尺寸信息 事件 性能优化 宏任务和微任务 采纳 JSC 引擎的术语,我们把宿主发起的任务称为宏观任务,把 JavaScript 引擎发起的任务称为微观任务. JavaScript 引擎等待宿主环境分配宏观任务,在操作系统中,通常等待的行为都是

  • Redis内存数据库示例分析

    目录 redies dict字典 Redis的DB实现 具体的实现器 Redis持久化Aof redies dict字典 这是 Redis 最底层的结构,比如 1个DB 下面有 16个Dict 1. 使用接口方式, 基础实现是simple_dict ,sync_dict ,后续用户可以根据自己的需求进行自定义的实现属于自己的Dict , 在 forEach 方法 支持匿名函数方式 type Dict interface { Get(key string) (val interface {}, e

  • javascript递归函数定义和用法示例分析

    递归函数:是指函数直接或间接调用函数本身,则称该函数为递归函数. 这句话理解起来并不难,从概念上出发,给出以下的例子: function foo(){ console.log("函数 foo 是递归函数."); foo(); } 这个例子的 foo 函数就是一个递归函数. 当你把这个函数拿到浏览器上运行的时候,你会发现内存溢出了,为什么呢?因为这个递归函数没有停止处理或运算的出口,因此这个递归函数就演变为一个死循环. 那如何使用递归呢? 使用递归函数必须要符合两个条件: 1. 在每一次

  • Java中时间戳的获取和转换的示例分析

    日期时间是Java一个重要的数据类型,常见的日期时间格式通常为"yyyy-MM-dd HH:mm:ss",但是计算机中存储的日期时间并非字符串形式,而是长整型的时间戳.因为字符串又占用空间又难以运算,相比之下,长整型只占用四个字节,普通的加减乘除运算更是不在话下,所以时间戳是最佳的日期时间存储方案. 获取时间戳的代码很简单,只需调用System类的currentTimeMillis方法即可,如下所示: // 从System类获取当前的时间戳 long timeFromSystem =

  • Opencv对象追踪的示例代码

    1 HSV上下限 颜色的HSV上下限如下表: 2 追踪单个颜色 import cv2 as cv import numpy as np cap = cv.VideoCapture(0) lower_color = np.array([0, 43, 46]) upper_color = np.array([10, 255, 255]) while cap.isOpened(): # 读取帧 _, frame = cap.read() # 转换颜色空间 BGR 到 HSV hsv = cv.cvtC

  • python装饰器原理源码示例分析

    目录 前言 一.什么是装饰器 二.为什么要用装饰器 三.简单的装饰器 四.装饰器的语法糖 五.装饰器传参 六.带参数的装饰器 七.类装饰器 八.带参数的类装饰器 九.装饰器的顺序 前言 最近有人问我装饰器是什么,我就跟他说,其实就是装饰器就是类似于女孩子的发卡.你喜欢的一个女孩子,她可以有很多个发卡,而当她戴上不同的发卡,她的头顶上就是装饰了不同的发卡.但是你喜欢的女孩子还是你喜欢的女孩子.如果还觉得不理解的话,装饰器就是咱们的手机壳,你尽管套上了手机壳,但并不影响你的手机功能,可你的手机还是该

随机推荐