Python实现二叉搜索树

二叉搜索树

我们已经知道了在一个集合中获取键值对的两种不同的方法。回忆一下这些集合是如何实现ADT(抽象数据类型)MAP的。我们讨论两种ADT MAP的实现方式,基于列表的二分查找和哈希表。在这一节中,我们将要学习二叉搜索树,这是另一种键指向值的Map集合,在这种情况下我们不用考虑元素在树中的实际位置,但要知道使用二叉树来搜索更有效率。

搜索树操作

在我们研究这种实现方式之前,让我们回顾一下ADT MAP提供的接口。我们会注意到,这种接口和Python的字典非常相似。

  1. Map() 创建了一个新的空Map集合。
  2. put(key,val) 在Map中增加了一个新的键值对。如果这个键已经在这个Map中了,那么就用新的值来代替旧的值。
  3. get(key) 提供一个键,返回Map中保存的数据,或者返回None。
  4. del 使用del map[key]这条语句从Map中删除键值对。
  5. len() 返回Map中保存的键值对的数目
  6. in 如果所给的键在Map中,使用key in map这条语句返回True。

搜索树实现

一个二叉搜索树,如果具有左子树中的键值都小于父节点,而右子树中的键值都大于父节点的属性,我们将这种树称为BST搜索树。如之前所述的,当我们实现Map时,BST方法将引导我们实现这一点。图 1 展示了二叉搜索树的这一特性,显示的键没有关联任何的值。注意这种属性适用于每个父节点和子节点。所有在左子树的键值都小于根节点的键值,所有右子树的键值都大于根节点的键值。

图 1:一个简单的二叉搜索树

现在你知道什么是二叉搜索树了,我们再来看如何构造一个二叉搜索树,我们在搜索树中按图 1 显示的节点顺序插入这些键值,图 1 搜索树存在的节点:70,31,93,94,14,23,73。因为 70 是第一个被插入到树的值,它是根节点。接下来,31 小于 70,因此是 70 的左子树。接下来,93 大于 70,因此是 70 的右子树。我们现在填充了该树的两层,所以下一个键值,将会是 31 或者 93 的左子树或右子树。由于 94 大于 70 和 93,就变成了 93 的右子树。同样,14 小于 70 和 31,因此成为了 31 的左子树。23 也小于 31,因此必须是 31 的左子树。然而,它大于 14,所以是 14 的右子树。

为了实现二叉搜索树,我们将使用节点和引用的方法,这类似于我们实现链表和表达式树的过程。因为我们必须能够创建和使用一个空的二叉搜索树,所以我们将使用两个类来实现,第一个类我们称之为 BinarySearchTree,第二个类我们称之为TreeNode。BinarySearchTree类有一个TreeNode类的引用作为二叉搜索树的根,在大多数情况下,外部类定义的外部方法只需检查树是否为空,如果在树上有节点,要求BinarySearchTree类中含有私有方法把根定义为参数。在这种情况下,如果树是空的或者我们想删除树的根,我们就必须采用特殊操作。BinarySearchTree类的构造函数以及一些其他函数的代码如Listing 1 所示。

Listing 1

class BinarySearchTree:

  def __init__(self):
    self.root = None
    self.size = 0

  def length(self):
    return self.size

  def __len__(self):
    return self.size

  def __iter__(self):
    return self.root.__iter__()

TreeNode类提供了许多辅助函数,使得BinarySearchTree类的方法更容易实现过程。如Listing 2 所示,一个树节点的结构,是由这些辅助函数实现的。正如你看到的那样,这些辅助函数可以根据自己的位置来划分一个节点作为左或右孩子和该子节点的类型。TreeNode类非常清楚地跟踪了每个父节点的属性。当我们讨论删除操作的实现时,你将明白为什么这很重要。

对于Listing 2 中的TreeNode实现,另一个有趣的地方是,我们使用Python的可选参数。可选的参数很容易让我们在几种不同的情况下创建一个树节点,有时我们想创建一个新的树节点,即使我们已经有了父节点和子节点。与现有的父节点和子节点一样,我们可以通过父节点和子节点作为参数。有时我们也会创建一个包含键值对的树,我们不会传递父节点或子节点的任何参数。在这种情况下,我们将使用可选参数的默认值。

Listing 2

class TreeNode:
  def __init__(self,key,val,left=None,right=None,
                    parent=None):
    self.key = key
    self.payload = val
    self.leftChild = left
    self.rightChild = right
    self.parent = parent

  def hasLeftChild(self):
    return self.leftChild

  def hasRightChild(self):
    return self.rightChild

  def isLeftChild(self):
    return self.parent and self.parent.leftChild == self

  def isRightChild(self):
    return self.parent and self.parent.rightChild == self

  def isRoot(self):
    return not self.parent

  def isLeaf(self):
    return not (self.rightChild or self.leftChild)

  def hasAnyChildren(self):
    return self.rightChild or self.leftChild

  def hasBothChildren(self):
    return self.rightChild and self.leftChild

  def replaceNodeData(self,key,value,lc,rc):
    self.key = key
    self.payload = value
    self.leftChild = lc
    self.rightChild = rc
    if self.hasLeftChild():
      self.leftChild.parent = self
    if self.hasRightChild():
      self.rightChild.parent = self

现在,我们拥有了BinarySearchTree和TreeNode类,是时候写一个put方法使我们能够建立二叉搜索树。put方法是BinarySearchTree类的一个方法。这个方法将检查这棵树是否已经有根。如果没有,我们将创建一个新的树节点并把它设置为树的根。如果已经有一个根节点,我们就调用它自己,进行递归,用辅助函数_put按下列算法来搜索树:

从树的根节点开始,通过搜索二叉树来比较新的键值和当前节点的键值,如果新的键值小于当前节点,则搜索左子树。如果新的关键大于当前节点,则搜索右子树。

当搜索不到左(或右)子树,我们在树中所处的位置就是设置新节点的位置。
向树中添加一个节点,创建一个新的TreeNode对象并在这个点的上一个节点中插入这个对象。

Listing 3 显示了在树中插入新节点的Python代码。_put函数要按照上述的步骤编写递归算法。注意,当一个新的子树插入时,当前节点(CurrentNode)作为父节点传递给新的树。

我们执行插入的一个重要问题是重复的键值不能被正确的处理,我们的树实现了键值的复制,它将在右子树创建一个与原来节点键值相同的新节点。这样做的后果是,新的节点将不会在搜索过程中被发现。我们用一个更好的方式来处理插入重复的键值,旧的值被新键关联的值替换。我们把这个错误的修复,作为练习留给你。

Listing 3

def put(self,key,val):
  if self.root:
    self._put(key,val,self.root)
  else:
    self.root = TreeNode(key,val)
  self.size = self.size + 1

def _put(self,key,val,currentNode):
  if key < currentNode.key:
    if currentNode.hasLeftChild():
        self._put(key,val,currentNode.leftChild)
    else:
        currentNode.leftChild = TreeNode(key,val,parent=currentNode)
  else:
    if currentNode.hasRightChild():
        self._put(key,val,currentNode.rightChild)
    else:
        currentNode.rightChild = TreeNode(key,val,parent=currentNode)

随着put方法的实现,我们可以很容易地通过__setitem__方法重载[]作为操作符来调用put方法(参见Listing 4)。这使我们能够编写像myZipTree['Plymouth'] = 55446一样的python语句,这看上去就像Python的字典。

Listing 4

def __setitem__(self,k,v):
  self.put(k,v)

图 2 说明了将新节点插入到一个二叉搜索树的过程。灰色节点显示了插入过程中遍历树节点顺序。

图 2: 插入一个键值 = 19 的节点

一旦树被构造,接下来的任务就是为一个给定的键值实现检索。get方法比put方法更容易因为它只需递归搜索树,直到发现不匹配的叶节点或找到一个匹配的键值。当找到一个匹配的键值后,就会返回节点中的值。

Listing 5 显示了get,_get和__getitem__的代码。用_get方法搜索的代码与put方法具有相同的选择左或右子树的逻辑。请注意,_get方法返回TreeNode中get的值,_get就可以作为一个灵活有效的方式,为BinarySearchTree的其他可能需要使用TreeNode里的数据的方法提供参数。

通过实现__getitem__方法,我们可以写一个看起来就像我们访问字典一样的Python语句,而事实上我们只是操作二叉搜索树,例如Z = myziptree ['fargo']。正如你所看到的,__getitem__方法都是在调用get。

Listing 5

def get(self,key):
  if self.root:
    res = self._get(key,self.root)
    if res:
        return res.payload
    else:
        return None
  else:
    return None

def _get(self,key,currentNode):
  if not currentNode:
    return None
  elif currentNode.key == key:
    return currentNode
  elif key < currentNode.key:
    return self._get(key,currentNode.leftChild)
  else:
    return self._get(key,currentNode.rightChild)

def __getitem__(self,key):
  return self.get(key)

使用get,我们可以通过写一个BinarySearchTree的__contains__方法来实现操作,__contains__方法简单地调用了get方法,如果它有返回值就返回True,如果它是None就返回False。如Listing 6 所示。

Listing 6

def __contains__(self,key):
  if self._get(key,self.root):
    return True
  else:
    return False

回顾一下__contains__重载的操作符,这允许我们写这样的语句:

if 'Northfield' in myZipTree:
  print("oom ya ya")
(0)

相关推荐

  • C#二叉搜索树插入算法实例分析

    本文实例讲述了C#二叉搜索树插入算法.分享给大家供大家参考.具体实现方法如下: public class BinaryTreeNode { public BinaryTreeNode Left { get; set; } public BinaryTreeNode Right { get; set; } public int Data { get; set; } public BinaryTreeNode(int data) { this.Data = data; } } public void

  • 二叉搜索树实例练习

    一棵二叉查找树是按二叉树结构来组织的.这样的树可以用链表结构表示,其中每一个结点都是一个对象.结点中除了数据外,还包括域left,right和p,它们分别指向结点的左儿子.右儿子,如果结点不存在,则为NULL. 它或者是一棵空树:或者是具有下列性质的二叉树: 1)若左子树不空,则左子树上所有结点的值均小于它的根结点的值: (2)若右子树不空,则右子树上所有结点的值均大于它的根结点的值: (3)左.右子树也分别为二叉查找树: 显然满足了上面的性质,那么二叉查找树按中序遍历就是按从小到大的顺序遍历,

  • Python二叉搜索树与双向链表转换实现方法

    本文实例讲述了Python二叉搜索树与双向链表实现方法.分享给大家供大家参考,具体如下: # encoding=utf8 ''' 题目:输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表. 要求不能创建任何新的结点,只能调整树中结点指针的指向. ''' class BinaryTreeNode(): def __init__(self, value, left = None, right = None): self.value = value self.left = left self.

  • 二叉搜索树的插入与删除(详细解析)

    题目:创建一个类,类中的数据成员时一棵二叉搜索树,对外提供的接口有添加结点和删除结点这两种方法.用户不关注二叉树的情况.要求我们给出这个类的结构以及实现类中的方法. 思路添加结点:添加结点其实很容易,我们只需要找到结点所行对应的位置就可以了,而且没有要求是平衡的二叉搜索树,因此每次添加结点都是在叶子结点上操作,不需要修改二叉搜索树整体的结构.要找出添加节点在二叉搜索树中的位置,可以用一个循环解决.判断插入结点与当前头结点的大小,如果大于头结点则继续搜索右子树,如果小于头结点则继续搜索左子树.直到

  • 二叉搜索树源码分享

    复制代码 代码如下: #include <iostream>using namespace std; //枚举类,前中后三种遍历方式enum ORDER_MODE{ ORDER_MODE_PREV = 0, ORDER_MODE_MID, ORDER_MODE_POST}; //树节点的结构体template <class T>struct BinaryNode{ T    element; BinaryNode  *left; BinaryNode  *right; Binary

  • Java 实现二叉搜索树的查找、插入、删除、遍历

    由于最近想要阅读下JDK1.8 中HashMap的具体实现,但是由于HashMap的实现中用到了红黑树,所以我觉得有必要先复习下红黑树的相关知识,所以写下这篇随笔备忘,有不对的地方请指出- 学习红黑树,我觉得有必要从二叉搜索树开始学起,本篇随笔就主要介绍Java实现二叉搜索树的查找.插入.删除.遍历等内容. 二叉搜索树需满足以下四个条件: 若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 若任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值: 任意节点的左.右子

  • C#创建二叉搜索树的方法

    本文实例讲述了C#创建二叉搜索树的方法.分享给大家供大家参考.具体如下: public static BinaryTreeNode BuildBinarySearchTree(int[] sortedArray) { if (sortedArray.Length == 0) return null; int _mid = sortedArray.Length / 2; BinaryTreeNode _root = new BinaryTreeNode(sortedArray[_mid]); in

  • javascript数据结构之二叉搜索树实现方法

    本文实例讲述了javascript二叉搜索树实现方法.分享给大家供大家参考,具体如下: 二叉搜索树:顾名思义,树上每个节点最多只有二根分叉:而且左分叉节点的值 < 右分叉节点的值 . 特点:插入节点.找最大/最小节点.节点值排序 非常方便 二叉搜索树-javascript实现 <script type="text/javascript"> // <![CDATA[ //打印输出 function println(msg) { document.write(msg

  • Python实现二叉搜索树BST的方法示例

    二叉排序树(BST)又称二叉查找树.二叉搜索树 二叉排序树(Binary Sort Tree)又称二叉查找树.它或者是一棵空树:或者是具有下列性质的二叉树: 1.若左子树不空,则左子树上所有结点的值均小于根结点的值: 2.若右子树不空,则右子树上所有结点的值均大于根节点的值: 3.左.右子树也分别为二叉排序树. 求树深度 按序输出节点值(使用中序遍历) 查询二叉搜索树中一个具有给点关键字的结点,返回该节点的位置.时间复杂度是O(h),h是树的高度. 递归/迭代求最大关键字元素 递归/迭代求最小关

  • Python实现二叉搜索树

    二叉搜索树 我们已经知道了在一个集合中获取键值对的两种不同的方法.回忆一下这些集合是如何实现ADT(抽象数据类型)MAP的.我们讨论两种ADT MAP的实现方式,基于列表的二分查找和哈希表.在这一节中,我们将要学习二叉搜索树,这是另一种键指向值的Map集合,在这种情况下我们不用考虑元素在树中的实际位置,但要知道使用二叉树来搜索更有效率. 搜索树操作 在我们研究这种实现方式之前,让我们回顾一下ADT MAP提供的接口.我们会注意到,这种接口和Python的字典非常相似. Map() 创建了一个新的

  • Python实现查找二叉搜索树第k大的节点功能示例

    本文实例讲述了Python实现查找二叉搜索树第k大的节点功能.分享给大家供大家参考,具体如下: 题目描述 给定一个二叉搜索树,找出其中第k大的节点 就是一个中序遍历的过程,不需要额外的数组,便利到节点之后,k减一就行. 代码1 class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def __init__(self): self.k = 0 de

  • Python二叉搜索树与双向链表转换算法示例

    本文实例讲述了Python二叉搜索树与双向链表转换算法.分享给大家供大家参考,具体如下: 题目描述 输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表.要求不能创建任何新的结点,只能调整树中结点指针的指向. 普通的二叉树也可以转换成双向链表,只不过不是排序的 思路: 1. 与中序遍历相同 2. 采用递归,先链接左指针,再链接右指针 代码1,更改doubleLinkedList,最后返回list的第一个元素: class TreeNode: def __init__(self, x): s

  • Javascript实现从小到大的数组转换成二叉搜索树

    废话不多说了,直接给大家贴代码了,具体代码如下所示: var Array = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; var Tree = createTree(Array); console.log(Tree); // 构造一个节点 function Node(nodeData, leftData, rightData) { this.nodeData = nodeData; this.leftData = leftData; this.rightData = rig

  • javascript算法之二叉搜索树的示例代码

    什么是二叉树 二叉树就是树的每个节点最多只能有两个子节点 什么是二叉搜索树 二叉搜索树在二叉树的基础上,多了一个条件,就是二叉树在插入值时,若插入值比当前节点小,就插入到左节点,否则插入到右节点:若插入过程中,左节点或右节点已经存在,那么继续按如上规则比较,直到遇到一个新的节点. 二叉搜索树的特性 二叉搜索树由于其独特的数据结构,使得其无论在增删,还是查找,时间复杂度都是O(h),h为二叉树的高度.因此二叉树应该尽量的矮,即左右节点尽量平衡. 二叉搜索树的构造 要构造二叉搜索树,首先要构造二叉树

  • C++ 二叉搜索树(BST)的实现方法

    废话不多说了,直接给大家贴代码了,具体代码如下所示: class BST { public: struct Node { int key;//节点的key int value;//节点的value Node* left; Node *right; int N;//节点的叶子节点数目 Node(int _key, int _value, int _N) { key = _key; value = _value; N = _N; } }; BST(); ~BST(); void put(int ke

随机推荐