python绘制中国大陆人口热力图

这篇文章给出了如何绘制中国人口密度图,但是运行存在一些问题,我在一些地方进行了修改。

本人使用的IDE是anaconda,因此事先在anaconda prompt 中安装Basemap包

conda install Basemap

新建文档,导入需要的包

import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
from matplotlib.patches import Polygon
from matplotlib.colors import rgb2hex
import numpy as np
import pandas as pd

Basemap中不包括中国省界,需要在下面网站下载中国省界,点击Shapefile下载。

生成中国大陆省界图片。

plt.figure(figsize=(16,8))
m = Basemap(
 llcrnrlon=77,
 llcrnrlat=14,
 urcrnrlon=140,
 urcrnrlat=51,
 projection='lcc',
 lat_1=33,
 lat_2=45,
 lon_0=100
)
m.drawcountries(linewidth=1.5)
m.drawcoastlines()

m.readshapefile('gadm36_CHN_shp/gadm36_CHN_1', 'states', drawbounds=True)

去国家统计局网站下载人口各省,只需保留地区和总人口即可,保存为csv格式并改名为pop.csv。

读取数据,储存为dataframe格式,删去地名之中的空格,并设置地名为dataframe的index。

df = pd.read_csv('pop.csv')
new_index_list = []
for i in df["地区"]:
 i = i.replace(" ","")
 new_index_list.append(i)
new_index = {"region": new_index_list}
new_index = pd.DataFrame(new_index)
df = pd.concat([df,new_index], axis=1)
df = df.drop(["地区"], axis=1)
df.set_index("region", inplace=True)

将Basemap中的地区与我们下载的csv中的人口数据对应起来,建立字典。注意,Basemap中的地名与csv文件中的地名并不完全一样,需要进行一些处理。

provinces = m.states_info
statenames=[]
colors = {}
cmap = plt.cm.YlOrRd
vmax = 100000000
vmin = 3000000

for each_province in provinces:
 province_name = each_province['NL_NAME_1']
 p = province_name.split('|')
 if len(p) > 1:
  s = p[1]
 else:
  s = p[0]
 s = s[:2]
 if s == '黑龍':
  s = '黑龙江'
 if s == '内蒙':
  s = '内蒙古'
 statenames.append(s)
 pop = df['人口数'][s]
 colors[s] = cmap(np.sqrt((pop - vmin) / (vmax - vmin)))[:3]

最后画出图片即可

ax = plt.gca()
for nshape, seg in enumerate(m.states):
 color = rgb2hex(colors[statenames[nshape]])
 poly = Polygon(seg, facecolor=color, edgecolor=color)
 ax.add_patch(poly)

plt.show()

完整代码如下

# -*- coding: utf-8 -*-

import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
from matplotlib.patches import Polygon
from matplotlib.colors import rgb2hex
import numpy as np
import pandas as pd

plt.figure(figsize=(16,8))
m = Basemap(
 llcrnrlon=77,
 llcrnrlat=14,
 urcrnrlon=140,
 urcrnrlat=51,
 projection='lcc',
 lat_1=33,
 lat_2=45,
 lon_0=100
)
m.drawcountries(linewidth=1.5)
m.drawcoastlines()

m.readshapefile('gadm36_CHN_shp/gadm36_CHN_1', 'states', drawbounds=True)

df = pd.read_csv('pop.csv')
new_index_list = []
for i in df["地区"]:
 i = i.replace(" ","")
 new_index_list.append(i)
new_index = {"region": new_index_list}
new_index = pd.DataFrame(new_index)
df = pd.concat([df,new_index], axis=1)
df = df.drop(["地区"], axis=1)
df.set_index("region", inplace=True)

provinces = m.states_info
statenames=[]
colors = {}
cmap = plt.cm.YlOrRd
vmax = 100000000
vmin = 3000000

for each_province in provinces:
 province_name = each_province['NL_NAME_1']
 p = province_name.split('|')
 if len(p) > 1:
  s = p[1]
 else:
  s = p[0]
 s = s[:2]
 if s == '黑龍':
  s = '黑龙江'
 if s == '内蒙':
  s = '内蒙古'
 statenames.append(s)
 pop = df['人口数'][s]
 colors[s] = cmap(np.sqrt((pop - vmin) / (vmax - vmin)))[:3]

ax = plt.gca()
for nshape, seg in enumerate(m.states):
 color = rgb2hex(colors[statenames[nshape]])
 poly = Polygon(seg, facecolor=color, edgecolor=color)
 ax.add_patch(poly)

plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python使用matplotlib绘制折线图教程

    matplotlib简介 matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图.而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中. 它的文档相当完备,并且Gallery页面中有上百幅缩略图,打开之后都有源程序.因此如果你需要绘制某种类型的图,只需要在这个页面中浏览/复制/粘贴一下,基本上都能搞定. 在Linux下比较著名的数据图工具还有gnuplot,这个是免费的,Python有一个包可以调用gnuplot,但是语法比较不

  • python pyheatmap包绘制热力图

    利用python pyheatmap包绘制热力图,供大家参考,具体内容如下 import matplotlib.pyplot as plt from pyheatmap.heatmap import HeatMap def plot_data(filename): with open(filename,'r') as fh: data=fh.read().split('\n') xs = [] ys = [] data_test=[] for line in data: line=line.st

  • python matlibplot绘制多条曲线图

    这里我利用的是matplotlib.pyplot.plot的工具来绘制折线图,这里先给出一个段代码和结果图: # -*- coding: UTF-8 -*- import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt #这里导入你自己的数据 #...... #...... #x_axix,train_pn_dis这些都是长度相同的list() #开始画图 sub_axix = filter(lambda

  • python绘制热力图heatmap

    本文实例为大家分享了python绘制热力图的具体代码,供大家参考,具体内容如下 python的热力图是用皮尔逊相关系数来查看两者之间的关联性. #encoding:utf-8 import numpy as np import pandas as pd from matplotlib import pyplot as plt from matplotlib import cm from matplotlib import axes import pylab pylab.mpl.rcParams[

  • python使用matplotlib绘制柱状图教程

    Matplotlib的概念这里就不多介绍了,关于绘图库Matplotlib的安装方法:点击这里 小编之前也和大家分享过python使用matplotlib实现的折线图和制饼图效果,感兴趣的朋友们也可以点击查看,下面来看看python使用matplotlib绘制柱状图的方法吧,具体如下: 1. 基本的柱状图 import matplotlib.pyplot as plt data = [5, 20, 15, 25, 10] plt.bar(range(len(data)), data) plt.s

  • Python+matplotlib绘制不同大小和颜色散点图实例

     具有不同标记颜色和大小的散点图演示. 演示结果: 实现代码: import numpy as np import matplotlib.pyplot as plt import matplotlib.cbook as cbook # Load a numpy record array from yahoo csv data with fields date, open, close, # volume, adj_close from the mpl-data/example directory

  • Python使用plotly绘制数据图表的方法

    导语:使用 python-plotly 模块来进行压测数据的绘制,并且生成静态 html 页面结果展示. 不少小伙伴在开发过程中都有对模块进行压测的经历,压测结束后大家往往喜欢使用Excel处理压测数据并绘制数据可视化视图,但这样不能很方便的使用web页面进行数据展示.本文将介绍使用python-plotly模块来进行压测数据的绘制,并且生成静态html页面方便结果展示. Plotly简介 Plotly是一款使用JavaScript开发的制图工具,提供了与主流数据分析语言交互的API(如:Pyt

  • python+matplotlib实现动态绘制图片实例代码(交互式绘图)

    本文研究的主要是python+matplotlib实现动态绘制图片(交互式绘图)的相关内容,具体介绍和实现代码如下所示. 最近在研究动态障碍物避障算法,在Python语言进行算法仿真时需要实时显示障碍物和运动物的当前位置和轨迹,利用Anaconda的Python打包集合,在Spyder中使用Python3.5语言和matplotlib实现路径的动态显示和交互式绘图(和Matlab功能类似). Anaconda是一个用于科学计算的Python发行版,支持 Linux, Mac, Windows系统

  • Python绘制热力图示例

    本文实例讲述了Python绘制热力图操作.分享给大家供大家参考,具体如下: 示例一: # -*- coding: utf-8 -*- from pyheatmap.heatmap import HeatMap import numpy as np N = 10000 X = np.random.rand(N) * 255 # [0, 255] Y = np.random.rand(N) * 255 data = [] for i in range(N): tmp = [int(X[i]), in

  • python学习之matplotlib绘制散点图实例

    要绘制单个点,可使用函数scatter(),并向其传递一对x和y坐标,它将在指定位置绘制一个点: """使用scatter()绘制散点图""" import matplotlib.pyplot as plt plt.scatter(2, 4) plt.show() 下面来设置输出的样式:添加标题,给轴加上标签,并确保所有文本都大到能够看清.并使用scatter()绘制一系列点 """使用scatter()绘制散点图&

  • python使用PyGame绘制图像并保存为图片文件的方法

    本文实例讲述了python使用PyGame绘制图像并保存为图片文件的方法.分享给大家供大家参考.具体实现方法如下: ''' pg_draw_circle_save101.py draw a blue solid circle on a white background save the drawing to an image file for result see http://prntscr.com/156wxi tested with Python 2.7 and PyGame 1.9.2

  • python中Matplotlib实现绘制3D图的示例代码

    Matplotlib 也可以绘制 3D 图像,与二维图像不同的是,绘制三维图像主要通过 mplot3d 模块实现.但是,使用 Matplotlib 绘制三维图像实际上是在二维画布上展示,所以一般绘制三维图像时,同样需要载入 pyplot 模块. mplot3d 模块下主要包含 4 个大类,分别是: mpl_toolkits.mplot3d.axes3d() mpl_toolkits.mplot3d.axis3d() mpl_toolkits.mplot3d.art3d() mpl_toolkit

随机推荐