Spark MLlib随机梯度下降法概述与实例

机器学习算法中回归算法有很多,例如神经网络回归算法、蚁群回归算法,支持向量机回归算法等,其中也包括本篇文章要讲述的梯度下降算法,本篇文章将主要讲解其基本原理以及基于Spark MLlib进行实例示范,不足之处请多多指教。

梯度下降算法包含多种不同的算法,有批量梯度算法,随机梯度算法,折中梯度算法等等。对于随机梯度下降算法而言,它通过不停的判断和选择当前目标下最优的路径,从而能够在最短路径下达到最优的结果。我们可以在一个人下山坡为例,想要更快的到达山低,最简单的办法就是在当前位置沿着最陡峭的方向下山,到另一个位置后接着上面的方式依旧寻找最陡峭的方向走,这样每走一步就停下来观察最下路线的方法就是随机梯度下降算法的本质。

随机梯度下降算法理论基础

在线性回归中,我们给出回归方程,如下所示:

我们知道,对于最小二乘法要想求得最优变量就要使得计算值与实际值的偏差的平方最小。而随机梯度下降算法对于系数需要通过不断的求偏导求解出当前位置下最优化的数据,那么梯度方向公式推导如下公式,公式中的θ会向着梯度下降最快的方向减少,从而推断出θ的最优解。

因此随机梯度下降法的公式归结为通过迭代计算特征值从而求出最合适的值。θ的求解公式如下。

α是下降系数,即步长,学习率,通俗的说就是计算每次下降的幅度的大小,系数越大每次计算的差值越大,系数越小则差值越小,但是迭代计算的时间也会相对延长。θ的初值可以随机赋值,比如下面的例子中初值赋值为0。

Spark MLlib随机梯度下降算法实例

下面使用Spark MLlib来迭代计算回归方程y=2x的θ最优解,代码如下:

package cn.just.shinelon.MLlib.Algorithm

import java.util

import scala.collection.immutable.HashMap

/**
 * 随机梯度下降算法实战
 * 随机梯度下降算法:最短路径下达到最优结果
 * 数学表达公式如下:
 * f(θ)=θ0x0+θ1x1+θ2x2+...+θnxn
 * 对于系数要通过不停地求解出当前位置下最优化的数据,即不停对系数θ求偏导数
 * 则θ求解的公式如下:
 * θ=θ-α(f(θ)-yi)xi
 * 公式中α是下降系数,即每次下降的幅度大小,系数越大则差值越小,系数越小则差值越小,但是计算时间也相对延长
 */
object SGD {
 var data=HashMap[Int,Int]()     //创建数据集
 def getdata():HashMap[Int,Int]={
  for(i <- 1 to 50){        //创建50个数据集
   data += (i->(2*i))       //写入公式y=2x
  }
  data               //返回数据集
 }

 var θ:Double=0            //第一步 假设θ为0
 var α:Double=0.1           //设置步进系数

 def sgd(x:Double,y:Double)={    //随机梯度下降迭代公式
  θ=θ-α*((θ*x)-y)         //迭代公式
 }

 def main(args: Array[String]): Unit = {
  val dataSource=getdata()     //获取数据集
  dataSource.foreach(myMap=>{    //开始迭代
   sgd(myMap._1,myMap._2)     //输入数据
  })
  println("最终结果值θ为:"+θ)
 }
}

需要注意的是随着步长系数增大以及数据量的增大,θ值偏差越来越大。同时这里也遗留下一个问题,当数据量大到一定程度,为什么θ值会为NaN,笔者心中有所疑惑,如果哪位大佬有想法可以留言探讨,谢谢!

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 运用TensorFlow进行简单实现线性回归、梯度下降示例

    线性回归属于监督学习,因此方法和监督学习应该是一样的,先给定一个训练集,根据这个训练集学习出一个线性函数,然后测试这个函数训练的好不好(即此函数是否足够拟合训练集数据),挑选出最好的函数(cost function最小)即可. 单变量线性回归: a) 因为是线性回归,所以学习到的函数为线性函数,即直线函数: b) 因为是单变量,因此只有一个x. 我们能够给出单变量线性回归的模型: 我们常称x为feature,h(x)为hypothesis. 上面介绍的方法中,我们肯定有一个疑问,怎样能够看出线性

  • Spark MLlib随机梯度下降法概述与实例

    机器学习算法中回归算法有很多,例如神经网络回归算法.蚁群回归算法,支持向量机回归算法等,其中也包括本篇文章要讲述的梯度下降算法,本篇文章将主要讲解其基本原理以及基于Spark MLlib进行实例示范,不足之处请多多指教. 梯度下降算法包含多种不同的算法,有批量梯度算法,随机梯度算法,折中梯度算法等等.对于随机梯度下降算法而言,它通过不停的判断和选择当前目标下最优的路径,从而能够在最短路径下达到最优的结果.我们可以在一个人下山坡为例,想要更快的到达山低,最简单的办法就是在当前位置沿着最陡峭的方向下

  • Python语言描述随机梯度下降法

    1.梯度下降 1)什么是梯度下降? 因为梯度下降是一种思想,没有严格的定义,所以用一个比喻来解释什么是梯度下降. 简单来说,梯度下降就是从山顶找一条最短的路走到山脚最低的地方.但是因为选择方向的原因,我们找到的的最低点可能不是真正的最低点.如图所示,黑线标注的路线所指的方向并不是真正的地方. 既然是选择一个方向下山,那么这个方向怎么选?每次该怎么走? 先说选方向,在算法中是以随机方式给出的,这也是造成有时候走不到真正最低点的原因. 如果选定了方向,以后每走一步,都是选择最陡的方向,直到最低点.

  • python实现随机梯度下降法

    看这篇文章前强烈建议你看看上一篇python实现梯度下降法: 一.为什么要提出随机梯度下降算法 注意看梯度下降法权值的更新方式(推导过程在上一篇文章中有) 也就是说每次更新权值都需要遍历整个数据集(注意那个求和符号),当数据量小的时候,我们还能够接受这种算法,一旦数据量过大,那么使用该方法会使得收敛过程极度缓慢,并且当存在多个局部极小值时,无法保证搜索到全局最优解.为了解决这样的问题,引入了梯度下降法的进阶形式:随机梯度下降法. 二.核心思想 对于权值的更新不再通过遍历全部的数据集,而是选择其中

  • python机器学习逻辑回归随机梯度下降法

    目录 写在前面 随机梯度下降法 参考文献 写在前面 随机梯度下降法就在随机梯度上.意思就是说当我们在初始点时想找到下一点的梯度,这个点是随机的.全批量梯度下降是从一个点接着一点是有顺序的,全部数据点都要求梯度且有顺序. 全批量梯度下降虽然稳定,但速度较慢: SGD虽然快,但是不够稳定 随机梯度下降法 随机梯度下降法(Stochastic Gradient Decent, SGD)是对全批量梯度下降法计算效率的改进算法.本质上来说,我们预期随机梯度下降法得到的结果和全批量梯度下降法相接近:SGD的

  • python+numpy+matplotalib实现梯度下降法

    这个阶段一直在做和梯度一类算法相关的东西,索性在这儿做个汇总, 一.算法论述 梯度下降法(gradient  descent)别名最速下降法(曾经我以为这是两个不同的算法-.-),是用来求解无约束最优化问题的一种常用算法.下面以求解线性回归为题来叙述: 设:一般的线性回归方程(拟合函数)为:(其中的值为1) 则这一组向量参数选择的好与坏就需要一个机制来评估,据此我们提出了其损失函数为(选择均方误差): 我们现在的目的就是使得损失函数取得最小值,即目标函数为: 如果的值取到了0,意味着我们构造出了

  • Keras SGD 随机梯度下降优化器参数设置方式

    SGD 随机梯度下降 Keras 中包含了各式优化器供我们使用,但通常我会倾向于使用 SGD 验证模型能否快速收敛,然后调整不同的学习速率看看模型最后的性能,然后再尝试使用其他优化器. Keras 中文文档中对 SGD 的描述如下: keras.optimizers.SGD(lr=0.01, momentum=0.0, decay=0.0, nesterov=False) 随机梯度下降法,支持动量参数,支持学习衰减率,支持Nesterov动量 参数: lr:大或等于0的浮点数,学习率 momen

  • Python编程实现线性回归和批量梯度下降法代码实例

    通过学习斯坦福公开课的线性规划和梯度下降,参考他人代码自己做了测试,写了个类以后有时间再去扩展,代码注释以后再加,作业好多: import numpy as np import matplotlib.pyplot as plt import random class dataMinning: datasets = [] labelsets = [] addressD = '' #Data folder addressL = '' #Label folder npDatasets = np.zer

  • 梯度下降法介绍及利用Python实现的方法示例

    本文主要给大家介绍了梯度下降法及利用Python实现的相关内容,分享出来供大家参考学习,下面话不多说,来一起看看详细的介绍吧. 梯度下降法介绍 梯度下降法(gradient descent),又名最速下降法(steepest descent)是求解无约束最优化问题最常用的方法,它是一种迭代方法,每一步主要的操作是求解目标函数的梯度向量,将当前位置的负梯度方向作为搜索方向(因为在该方向上目标函数下降最快,这也是最速下降法名称的由来). 梯度下降法特点:越接近目标值,步长越小,下降速度越慢. 直观上

  • python实现随机梯度下降(SGD)

    使用神经网络进行样本训练,要实现随机梯度下降算法.这里我根据麦子学院彭亮老师的讲解,总结如下,(神经网络的结构在另一篇博客中已经定义): def SGD(self, training_data, epochs, mini_batch_size, eta, test_data=None): if test_data: n_test = len(test_data)#有多少个测试集 n = len(training_data) for j in xrange(epochs): random.shuf

  • 基于Spark实现随机森林代码

    本文实例为大家分享了基于Spark实现随机森林的具体代码,供大家参考,具体内容如下 public class RandomForestClassficationTest extends TestCase implements Serializable { /** * */ private static final long serialVersionUID = 7802523720751354318L; class PredictResult implements Serializable{ /

随机推荐