C++实现LeetCode(52.N皇后问题之二)

[LeetCode] 52. N-Queens II N皇后问题之二

The n-queens puzzle is the problem of placing nqueens on an n×n chessboard such that no two queens attack each other.

Given an integer n, return the number of distinct solutions to the n-queens puzzle.

Example:

Input: 4
Output: 2
Explanation: There are two distinct solutions to the 4-queens puzzle as shown below.
[
[".Q..",  // Solution 1
"...Q",
"Q...",
"..Q."],

 ["..Q.",  // Solution 2
"Q...",
"...Q",
".Q.."]
]

这道题是之前那道 N-Queens 的延伸,说是延伸其实我觉得两者顺序应该颠倒一样,上一道题比这道题还要稍稍复杂一些,两者本质上没有啥区别,都是要用回溯法 Backtracking 来解,如果理解了之前那道题的思路,此题只要做很小的改动即可,不再需要求出具体的皇后的摆法,只需要每次生成一种解法时,计数器加一即可,代码如下:

解法一:

class Solution {
public:
    int totalNQueens(int n) {
        int res = 0;
        vector<int> pos(n, -1);
        helper(pos, 0, res);
        return res;
    }
    void helper(vector<int>& pos, int row, int& res) {
        int n = pos.size();
        if (row == n) ++res;
        for (int col = 0; col < n; ++col) {
            if (isValid(pos, row, col)) {
                pos[row] = col;
                helper(pos, row + 1, res);
                pos[row] = -1;
            }
        }
    }
    bool isValid(vector<int>& pos, int row, int col) {
        for (int i = 0; i < row; ++i) {
            if (col == pos[i] || abs(row - i) == abs(col - pos[i])) {
                return false;
            }
        }
        return true;
    }
};

但是其实我们并不需要知道每一行皇后的具体位置,而只需要知道会不会产生冲突即可。对于每行要新加的位置,需要看跟之前的列,对角线,及逆对角线之间是否有冲突,所以我们需要三个布尔型数组,分别来记录之前的列 cols,对角线 diag,及逆对角线 anti_diag 上的位置,其中 cols 初始化大小为n,diag 和 anti_diag 均为 2n。列比较简单,是哪列就直接去 cols 中查找,而对角线的话,需要处理一下,如果我们仔细观察数组位置坐标的话,可以发现所有同一条主对角线的数,其纵坐标减去横坐标再加n,一定是相等的。同理,同一条逆对角线上的数字,其横纵坐标之和一定是相等的,根据这个,就可以快速判断主逆对角线上是否有冲突。任意一个有冲突的话,直接跳过当前位置,否则对于新位置,三个数组中对应位置都赋值为 true,然后对下一行调用递归,递归返回后记得还要还原状态,参见代码如下:

解法二:

class Solution {
public:
    int totalNQueens(int n) {
        int res = 0;
        vector<bool> cols(n), diag(2 * n), anti_diag(2 * n);
        helper(n, 0, cols, diag, anti_diag, res);
        return res;
    }
    void helper(int n, int row, vector<bool>& cols, vector<bool>& diag, vector<bool>& anti_diag, int& res) {
        if (row == n) ++res;
        for (int col = 0; col < n; ++col) {
            int idx1 = col - row + n, idx2 = col + row;
            if (cols[col] || diag[idx1] || anti_diag[idx2]) continue;
            cols[col] = diag[idx1] = anti_diag[idx2] = true;
            helper(n, row + 1, cols, diag, anti_diag, res);
            cols[col] = diag[idx1] = anti_diag[idx2] = false;
        }
    }
};

到此这篇关于C++实现LeetCode(52.N皇后问题之二)的文章就介绍到这了,更多相关C++实现N皇后问题之二内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C++实现LeetCode(94.二叉树的中序遍历)

    [LeetCode] 94. Binary Tree Inorder Traversal 二叉树的中序遍历 Given a binary tree, return the inorder traversal of its nodes' values. Example: Input: [1,null,2,3] 1 \ 2 / 3 Output: [1,3,2] Follow up: Recursive solution is trivial, could you do it iteratively

  • C++实现LeetCode(144.二叉树的先序遍历)

    [LeetCode] 144. Binary Tree Preorder Traversal 二叉树的先序遍历 Given a binary tree, return the preorder traversal of its nodes' values. Example: Input:  [1,null,2,3] 1 \ 2 / 3 Output:  [1,2,3] Follow up: Recursive solution is trivial, could you do it iterat

  • C++实现LeetCode(113.二叉树路径之和之二)

    [LeetCode] 113. Path Sum II 二叉树路径之和之二 Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given sum. For example: Given the below binary tree and sum = 22,  5 / \ 4   8 /      / \ 11  13  4 /  \         / \ 7  

  • C++实现LeetCode(47.全排列之二)

    [LeetCode] 47. Permutations II 全排列之二 Given a collection of numbers that might contain duplicates, return all possible unique permutations. Example: Input: [1,1,2] Output: [ [1,1,2], [1,2,1], [2,1,1] ] 这道题是之前那道 Permutations 的延伸,由于输入数组有可能出现重复数字,如果按照之前的

  • C++实现LeetCode(39.组合之和)

    [LeetCode] 39. Combination Sum 组合之和 Given a set of candidate numbers (candidates) (without duplicates) and a target number (target), find all unique combinations in candidates where the candidate numbers sums to target. The same repeated number may b

  • C++实现LeetCode(90.子集合之二)

    [LeetCode] 90. Subsets II 子集合之二 Given a collection of integers that might contain duplicates, S, return all possible subsets. Note: Elements in a subset must be in non-descending order. The solution set must not contain duplicate subsets. For example

  • C++实现LeetCode(40.组合之和之二)

    [LeetCode] 40. Combination Sum II 组合之和之二 Given a collection of candidate numbers (candidates) and a target number (target), find all unique combinations in candidates where the candidate numbers sums to target. Each number in candidates may only be u

  • C++实现LeetCode(41.首个缺失的正数)

    [LeetCode] 41. First Missing Positive 首个缺失的正数 Given an unsorted integer array, find the smallest missing positive integer. Example 1: Input: [1,2,0] Output: 3 Example 2: Input: [3,4,-1,1] Output: 2 Example 3: Input: [7,8,9,11,12] Output: 1 Note: Your

  • C++实现LeetCode(52.N皇后问题之二)

    [LeetCode] 52. N-Queens II N皇后问题之二 The n-queens puzzle is the problem of placing nqueens on an n×n chessboard such that no two queens attack each other. Given an integer n, return the number of distinct solutions to the n-queens puzzle. Example: Inpu

  • C++实现LeetCode(51.N皇后问题)

    [LeetCode] 51. N-Queens N皇后问题 The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other. Given an integer n, return all distinct solutions to the n-queens puzzle. Each solution contains a di

  • C++实现LeetCode(63.不同的路径之二)

    [LeetCode] 63. Unique Paths II 不同的路径之二 A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right c

  • C++实现LeetCode(137.单独的数字之二)

    [LeetCode] 137. Single Number II 单独的数字之二 Given a non-empty array of integers, every element appears three times except for one, which appears exactly once. Find that single one. Note: Your algorithm should have a linear runtime complexity. Could you

  • C++实现LeetCode(107.二叉树层序遍历之二)

    [LeetCode] 107. Binary Tree Level Order Traversal II 二叉树层序遍历之二 Given the root of a binary tree, return the bottom-up level order traversal of its nodes' values. (i.e., from left to right, level by level from leaf to root). Example 1: Input: root = [3

  • C++实现LeetCode(109.将有序链表转为二叉搜索树)

    [LeetCode] 109.Convert Sorted List to Binary Search Tree 将有序链表转为二叉搜索树 Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST. For this problem, a height-balanced binary tree is defined as a binary

  • C++实现LeetCode(108.将有序数组转为二叉搜索树)

    [LeetCode] 108.Convert Sorted Array to Binary Search Tree 将有序数组转为二叉搜索树 Given an array where elements are sorted in ascending order, convert it to a height balanced BST. For this problem, a height-balanced binary tree is defined as a binary tree in wh

  • C++实现LeetCode(119.杨辉三角之二)

    [LeetCode] 119. Pascal's Triangle II 杨辉三角之二 Given a non-negative index k where k ≤ 33, return the kth index row of the Pascal's triangle. Note that the row index starts from 0. In Pascal's triangle, each number is the sum of the two numbers directly

  • C++实现LeetCode(167.两数之和之二 - 输入数组有序)

    [LeetCode] 167.Two Sum II - Input array is sorted 两数之和之二 - 输入数组有序 Given an array of integers that is already sorted in ascending order, find two numbers such that they add up to a specific target number. The function twoSum should return indices of t

随机推荐