Python基于Opencv识别两张相似图片

在网上看到python做图像识别的相关文章后,真心感觉python的功能实在太强大,因此将这些文章总结一下,建立一下自己的知识体系。 当然了,图像识别这个话题作为计算机科学的一个分支,不可能就在本文简单几句就说清,所以本文只作基本算法的科普向。 看到一篇博客是介绍这个,但他用的是PIL中的Image实现的,感觉比较麻烦,于是利用Opencv库进行了更简洁化的实现。

相关背景

要识别两张相似图像,我们从感性上来谈是怎么样的一个过程?首先我们会区分这两张相片的类型,例如是风景照,还是人物照。风景照中,是沙漠还是海洋,人物照中,两个人是不是都是国字脸,还是瓜子脸(还是倒瓜子脸……哈哈……)。

那么从机器的角度来说也是这样的,先识别图像的特征,然后再相比。

很显然,在没有经过训练的计算机(即建立模型),那么计算机很难区分什么是海洋,什么是沙漠。但是计算机很容易识别到图像的像素值。

因此,在图像识别中,颜色特征是最为常用的。(其余常用的特征还有纹理特征、形状特征和空间关系特征等)

其中又分为

直方图 颜色集 颜色矩 聚合向量 相关图

直方图计算法

这里先用直方图进行简单讲述。

先借用一下恋花蝶的图片,

[图片上传失败...(image-6ca66e-1617780875489)]

从肉眼来看,这两张图片大概也有八成是相似的了。 在Python中利用opencv中的calcHist()方法获取其直方图数据,返回的结果是一个列表,使用matplotlib,画出了这两张图的直方图数据图 如下:

是的,我们可以明显的发现,两张图片的直方图还是比较重合的。所以利用直方图判断两张图片的是否相似的方法就是,计算其直方图的重合程度即可。 计算方法如下:

其中gi和si是分别指两条曲线的第i个点。

最后计算得出的结果就是就是其相似程度。

不过,这种方法有一个明显的弱点,就是他是按照颜色的全局分布来看的,无法描述颜色的局部分布和色彩所处的位置。

也就是假如一张图片以蓝色为主,内容是一片蓝天,而另外一张图片也是蓝色为主,但是内容却是妹子穿了蓝色裙子,那么这个算法也很可能认为这两张图片的相似的。

缓解这个弱点有一个方法就是利用Image的crop方法把图片等分,然后再分别计算其相似度,最后综合考虑。

图像指纹与汉明距离

在介绍下面其他判别相似度的方法前,先补充一些概念。第一个就是图像指纹

图像指纹和人的指纹一样,是身份的象征,而图像指纹简单点来讲,就是将图像按照一定的哈希算法,经过运算后得出的一组二进制数字。

说到这里,就可以顺带引出汉明距离的概念了。

假如一组二进制数据为101,另外一组为111,那么显然把第一组的第二位数据0改成1就可以变成第二组数据111,所以两组数据的汉明距离就为1

简单点说,汉明距离就是一组二进制数据变成另一组数据所需的步骤数,显然,这个数值可以衡量两张图片的差异,汉明距离越小,则代表相似度越高。汉明距离为0,即代表两张图片完全一样。

如何计算得到汉明距离,请看下面三种哈希算法

平均哈希法(aHash)

此算法是基于比较灰度图每个像素与平均值来实现的

一般步骤:

1.缩放图片,一般大小为8*8,64个像素值。
2.转化为灰度图
3.计算平均值:计算进行灰度处理后图片的所有像素点的平均值,直接用numpy中的mean()计算即可。
4.比较像素灰度值:遍历灰度图片每一个像素,如果大于平均值记录为1,否则为0.
5.得到信息指纹:组合64个bit位,顺序随意保持一致性。
最后比对两张图片的指纹,获得汉明距离即可。

感知哈希算法(pHash)

平均哈希算法过于严格,不够精确,更适合搜索缩略图,为了获得更精确的结果可以选择感知哈希算法,它采用的是DCT(离散余弦变换)来降低频率的方法

一般步骤:

  1. 缩小图片:32 * 32是一个较好的大小,这样方便DCT计算
  2. 转化为灰度图
  3. 计算DCT:利用Opencv中提供的dct()方法,注意输入的图像必须是32位浮点型,所以先利用numpy中的float32进行转换
  4. 缩小DCT:DCT计算后的矩阵是32 * 32,保留左上角的8 * 8,这些代表的图片的最低频率
  5. 计算平均值:计算缩小DCT后的所有像素点的平均值。
  6. 进一步减小DCT:大于平均值记录为1,反之记录为0.
  7. 得到信息指纹:组合64个信息位,顺序随意保持一致性。

最后比对两张图片的指纹,获得汉明距离即可。

dHash算法

相比pHash,dHash的速度要快的多,相比aHash,dHash在效率几乎相同的情况下的效果要更好,它是基于渐变实现的。

步骤:

  • 缩小图片:收缩到9*8的大小,以便它有72的像素点
  • 转化为灰度图
  • 计算差异值:dHash算法工作在相邻像素之间,这样每行9个像素之间产生了8个不同的差异,一共8行,则产生了64个差异值
  • 获得指纹:如果左边的像素比右边的更亮,则记录为1,否则为0.
  • 最后比对两张图片的指纹,获得汉明距离即可

整个的代码实现如下:

# -*- coding: utf-8 -*-
# 利用python实现多种方法来实现图像识别 

import cv2
import numpy as np
from matplotlib import pyplot as plt 

# 最简单的以灰度直方图作为相似比较的实现
def classify_gray_hist(image1,image2,size = (256,256)):
 # 先计算直方图
 # 几个参数必须用方括号括起来
 # 这里直接用灰度图计算直方图,所以是使用第一个通道,
 # 也可以进行通道分离后,得到多个通道的直方图
 # bins 取为16
 image1 = cv2.resize(image1,size)
 image2 = cv2.resize(image2,size)
 hist1 = cv2.calcHist([image1],[0],None,[256],[0.0,255.0])
 hist2 = cv2.calcHist([image2],[0],None,[256],[0.0,255.0])
 # 可以比较下直方图
 plt.plot(range(256),hist1,'r')
 plt.plot(range(256),hist2,'b')
 plt.show()
 # 计算直方图的重合度
 degree = 0
 for i in range(len(hist1)):
 if hist1[i] != hist2[i]:
 degree = degree + (1 - abs(hist1[i]-hist2[i])/max(hist1[i],hist2[i]))
 else:
 degree = degree + 1
 degree = degree/len(hist1)
 return degree 

# 计算单通道的直方图的相似值
def calculate(image1,image2):
 hist1 = cv2.calcHist([image1],[0],None,[256],[0.0,255.0])
 hist2 = cv2.calcHist([image2],[0],None,[256],[0.0,255.0])
 # 计算直方图的重合度
 degree = 0
 for i in range(len(hist1)):
 if hist1[i] != hist2[i]:
 degree = degree + (1 - abs(hist1[i]-hist2[i])/max(hist1[i],hist2[i]))
 else:
 degree = degree + 1
 degree = degree/len(hist1)
 return degree 

# 通过得到每个通道的直方图来计算相似度
def classify_hist_with_split(image1,image2,size = (256,256)):
 # 将图像resize后,分离为三个通道,再计算每个通道的相似值
 image1 = cv2.resize(image1,size)
 image2 = cv2.resize(image2,size)
 sub_image1 = cv2.split(image1)
 sub_image2 = cv2.split(image2)
 sub_data = 0
 for im1,im2 in zip(sub_image1,sub_image2):
 sub_data += calculate(im1,im2)
 sub_data = sub_data/3
 return sub_data 

# 平均哈希算法计算
def classify_aHash(image1,image2):
 image1 = cv2.resize(image1,(8,8))
 image2 = cv2.resize(image2,(8,8))
 gray1 = cv2.cvtColor(image1,cv2.COLOR_BGR2GRAY)
 gray2 = cv2.cvtColor(image2,cv2.COLOR_BGR2GRAY)
 hash1 = getHash(gray1)
 hash2 = getHash(gray2)
 return Hamming_distance(hash1,hash2) 

def classify_pHash(image1,image2):
 image1 = cv2.resize(image1,(32,32))
 image2 = cv2.resize(image2,(32,32))
 gray1 = cv2.cvtColor(image1,cv2.COLOR_BGR2GRAY)
 gray2 = cv2.cvtColor(image2,cv2.COLOR_BGR2GRAY)
 # 将灰度图转为浮点型,再进行dct变换
 dct1 = cv2.dct(np.float32(gray1))
 dct2 = cv2.dct(np.float32(gray2))
 # 取左上角的8*8,这些代表图片的最低频率
 # 这个操作等价于c++中利用opencv实现的掩码操作
 # 在python中进行掩码操作,可以直接这样取出图像矩阵的某一部分
 dct1_roi = dct1[0:8,0:8]
 dct2_roi = dct2[0:8,0:8]
 hash1 = getHash(dct1_roi)
 hash2 = getHash(dct2_roi)
 return Hamming_distance(hash1,hash2) 

# 输入灰度图,返回hash
def getHash(image):
 avreage = np.mean(image)
 hash = []
 for i in range(image.shape[0]):
 for j in range(image.shape[1]):
 if image[i,j] > avreage:
 hash.append(1)
 else:
 hash.append(0)
 return hash 

# 计算汉明距离
def Hamming_distance(hash1,hash2):
 num = 0
 for index in range(len(hash1)):
 if hash1[index] != hash2[index]:
 num += 1
 return num 

if __name__ == '__main__':
 img1 = cv2.imread('10.jpg')
 cv2.imshow('img1',img1)
 img2 = cv2.imread('11.jpg')
 cv2.imshow('img2',img2)
 degree = classify_gray_hist(img1,img2)
 #degree = classify_hist_with_split(img1,img2)
 #degree = classify_aHash(img1,img2)
 #degree = classify_pHash(img1,img2)
 print degree
 cv2.waitKey(0)

以上就是Python基于Opencv识别两张相似图片的详细内容,更多关于python识别相似图片的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python+Opencv实现把图片、视频互转的示例

    1. 安装Opencv包 pip install opvencv-python 2.实现代码: 视频转为图片: import cv2 cap=cv2.VideoCapture('E:/video/video-02.mp4') # 获取一个视频打开cap isOpened=cap.isOpened # 判断是否打开 print(isOpened) fps=cap.get(cv2.CAP_PROP_FPS) print(fps) # 获取宽度 width=int(cap.get(cv2.CAP_PR

  • Python + opencv对拍照得到的图片进行背景去除的实现方法

    有时候我们没办法得到pdf或者word文档,这个时候会使用手机或者相机进行拍照,往往会出现背景,打印出来就是灰色的或者有黑色的背景,这个时候影响视野观看,通过代码实现对背景去除,还原清晰图像.代码如下: #!/usr/bin/python3.6 # -*- coding: utf-8 -*- # @Time : 2020/11/17 19:06 # @Author : ptg # @Email : zhxwhchina@163.com # @File : 去背景.py # @Software:

  • Python+OpenCV图像处理——打印图片属性、设置存储路径、调用摄像头

    一. 打印图片属性.设置图片存储路径 代码如下: #打印图片的属性.保存图片位置 import cv2 as cv import numpy as np #numpy是一个开源的Python科学计算库 def get_image_info(image): print(type(image)) #type() 函数如果只有第一个参数则返回对象的类型 在这里函数显示图片类型为 numpy类型的数组 print(image.shape) #图像矩阵的shape属性表示图像的大小,shape会返回tup

  • Opencv+Python识别PCB板图片的步骤

    任务要求: 基于模板匹配算法识别PCB板型号 使用工具: Python3.OpenCV 使用模板匹配算法,模板匹配是一种最原始.最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别对象物,模板匹配具有自身的局限性,主要表现在它只能进行平行移动,即原图像中的匹配目标不能发生旋转或大小变化. 事先准备好待检测PCB与其对应的模板: 子模版: 基本流程如下: 1.在整个图像区域发现与给定子图像匹配的小块区域 2.选取模板图像T(给定的子图像) 3.另外需要一个待检测的图像--源图

  • python 基于opencv去除图片阴影

    一.前言 如果你自己打印过东西,应该有过这种经历.如果用自己拍的图片,在手机上看感觉还是清晰可见,但是一打印出来就是漆黑一片.比如下面这两张图片: 因为左边的图片有大片阴影,所以打印出来的图片不堪入目(因为打印要3毛钱,所以第二张图片只是我用程序模拟的效果). 那有什么办法可以解决吗?答案是肯定的,今天我们就来探讨几个去除阴影的方法. 二.如何去除阴影? 首先为了方便处理,我们通常会对图片进行灰度转换(即将图片转换成只有一个图层的灰色图像). 然后我们分析一下,在上面的图片中有三个主色调,分别是

  • python解决OpenCV在读取显示图片的时候闪退的问题

    利用OpenCV练习读取图片的时候,图片总是一闪而过,不利于观察,这个时候需要利用到waitKey函数. waitKey函数:用来等待按键,当用户按下按键后,该语句会被执行,并获取返回值. 语法格式为retval=cv2.waitKey([delay]) retval:表示返回值: delay:表示等待按键触发的时间,单位是ms: 下面是简单的例子展示: import cv2 lena=cv2.imread("D:\pmjcv\lena.bmp") cv2.namedWindow(&q

  • python读取并显示图片的三种方法(opencv、matplotlib、PIL库)

    前言 在进行图像处理时,经常会用到读取图片并显示出来这样的操作,所以本文总结了python中读取并显示图片的3种方式,分别基于opencv.matplotlib.PIL库实现,并给出了示例代码,介绍如下. OpenCV OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉和机器学习软件库,可以运行在Linux.Windows.Android和Mac OS操作系统上. 它轻量级而且高效--由一系列 C 函数和少量 C++ 类构成,同时提供了Python.Ruby.MATLAB等语言的接口

  • python基于OpenCV模板匹配识别图片中的数字

    前言 本博客主要实现利用OpenCV的模板匹配识别图像中的数字,然后把识别出来的数字输出到txt文件中,如果识别失败则输出"读取失败". 操作环境: OpenCV - 4.1.0 Python 3.8.1 程序目标 单个数字模板:(这些单个模板是我自己直接从图片上截取下来的) 要处理的图片: 终端输出: 文本输出: 思路讲解 代码讲解 首先定义两个会用到的函数 第一个是显示图片的函数,这样的话在显示图片的时候就比较方便了 def cv_show(name, img): cv2.imsh

  • python实现图像,视频人脸识别(opencv版)

    图片人脸识别 import cv2 filepath = "img/xingye-1.png" img = cv2.imread(filepath) # 读取图片 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转换灰色 # OpenCV人脸识别分类器 classifier = cv2.CascadeClassifier( "C:\Python36\Lib\site-packages\opencv-master\data\haar

  • Python基于Opencv识别两张相似图片

    在网上看到python做图像识别的相关文章后,真心感觉python的功能实在太强大,因此将这些文章总结一下,建立一下自己的知识体系. 当然了,图像识别这个话题作为计算机科学的一个分支,不可能就在本文简单几句就说清,所以本文只作基本算法的科普向. 看到一篇博客是介绍这个,但他用的是PIL中的Image实现的,感觉比较麻烦,于是利用Opencv库进行了更简洁化的实现. 相关背景 要识别两张相似图像,我们从感性上来谈是怎么样的一个过程?首先我们会区分这两张相片的类型,例如是风景照,还是人物照.风景照中

  • Python+Opencv识别两张相似图片

    在网上看到python做图像识别的相关文章后,真心感觉python的功能实在太强大,因此将这些文章总结一下,建立一下自己的知识体系. 当然了,图像识别这个话题作为计算机科学的一个分支,不可能就在本文简单几句就说清,所以本文只作基本算法的科普向. 看到一篇博客是介绍这个,但他用的是PIL中的Image实现的,感觉比较麻烦,于是利用Opencv库进行了更简洁化的实现. 相关背景 要识别两张相似图像,我们从感性上来谈是怎么样的一个过程?首先我们会区分这两张相片的类型,例如是风景照,还是人物照.风景照中

  • Python基于opencv调用摄像头获取个人图片的实现方法

    接触图像领域的应该对于opencv都不会感到陌生,这个应该算是功能十分强劲的一个算法库了,当然了,使用起来也是很方便的,之前使用Windows7的时候出现多该库难以安装成功的情况,现在这个问题就不存在了,需要安装包的话可以去我的资源中下载使用,使用pip安装方式十分地便捷. 今天主要是基于opencv模块来调用笔记本的内置摄像头,然后从视频流中获取到人脸的图像数据用于之后的人脸识别项目,也就是为了构建可用的数据集.整个实现过程并不复杂,具体如下: #!usr/bin/env python #en

  • Python基于OpenCV库Adaboost实现人脸识别功能详解

    本文实例讲述了Python基于OpenCV库Adaboost实现人脸识别功能.分享给大家供大家参考,具体如下: 以前用Matlab写神经网络的面部眼镜识别算法,研究算法逻辑,采集大量训练数据,迭代,计算各感知器的系数...相当之麻烦~而现在运用调用pythonOpenCV库Adaboost算法,无需知道算法逻辑,无需进行模型训练,人脸识别变得相当之简单了. 需要用到的库是opencv(open source computer vision),下载安装方式如下: 使用pip install num

  • python基于opencv实现人脸识别

    将opencv中haarcascade_frontalface_default.xml文件下载到本地,我们调用它辅助进行人脸识别. 识别图像中的人脸 #coding:utf-8 import cv2 as cv # 读取原始图像 img = cv.imread('face.png') # 调用熟悉的人脸分类器 识别特征类型 # 人脸 - haarcascade_frontalface_default.xml # 人眼 - haarcascade_eye.xml # 微笑 - haarcascad

  • Python基于opencv实现的人脸识别(适合初学者)

    目录 一点背景知识 一.人脸识别步骤 二.直接上代码 (1)录入人脸.py (2)数据训练.py (3)进行识别.py 三.运行过程及结果 1.获取人脸照片于目标文件中 2.进行数据训练,获得trainer.yml文件中的数据 3.进行识别 总结 一点背景知识 OpenCV 是一个开源的计算机视觉和机器学习库.它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包.根据这个项目的关于页面,OpenCV 已被广泛运用在各种项目上,从谷歌街景的图片拼接,到交互艺术展览的技术实现中,都有

  • Python基于内置库pytesseract实现图片验证码识别功能

    这篇文章主要介绍了Python基于内置库pytesseract实现图片验证码识别功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 环境准备: 1.安装Tesseract模块 git文档地址:https://digi.bib.uni-mannheim.de/tesseract/ 下载后就是一个exe安装包,直接右击安装即可,安装完成之后,配置一下环境变量,编辑 系统变量里面 path,添加下面的安装路径: 2.如果您想使用其他语言,请下载相应的

  • Python基于OpenCV实现人脸检测并保存

    本文实例为大家分享了Python基于OpenCV实现人脸检测,并保存的具体代码,供大家参考,具体内容如下 安装opencv 如果安装了pip的话,Opencv的在windows的安装可以直接通过cmd命令pip install opencv-python(只需要主要模块),也可以输入命令pip install opencv-contrib-python(如果需要main模块和contrib模块) 详情可以点击此处 导入opencv import cv2 所有包都包含haarcascade文件.这

随机推荐