PyTorch实现联邦学习的基本算法FedAvg

目录
  • I. 前言
  • II. 数据介绍
    • 特征构造
  • III. 联邦学习
    • 1. 整体框架
    • 2. 服务器端
    • 3. 客户端
  • IV. 代码实现
    • 1. 初始化
    • 2. 服务器端
    • 3. 客户端
    • 4. 测试
  • V. 实验及结果
  • VI. 源码及数据

I. 前言

在之前的一篇博客联邦学习基本算法FedAvg的代码实现中利用numpy手搭神经网络实现了FedAvg,手搭的神经网络效果已经很好了,不过这还是属于自己造轮子,建议优先使用PyTorch来实现。

II. 数据介绍

联邦学习中存在多个客户端,每个客户端都有自己的数据集,这个数据集他们是不愿意共享的。

本文选用的数据集为中国北方某城市十个区/县从2016年到2019年三年的真实用电负荷数据,采集时间间隔为1小时,即每一天都有24个负荷值。

我们假设这10个地区的电力部门不愿意共享自己的数据,但是他们又想得到一个由所有数据统一训练得到的全局模型。

除了电力负荷数据以外,还有一个备选数据集:风功率数据集。两个数据集通过参数type指定:type == 'load’表示负荷数据,'wind’表示风功率数据。

特征构造

用某一时刻前24个时刻的负荷值以及该时刻的相关气象数据(如温度、湿度、压强等)来预测该时刻的负荷值。

对于风功率数据,同样使用某一时刻前24个时刻的风功率值以及该时刻的相关气象数据来预测该时刻的风功率值。

各个地区应该就如何制定特征集达成一致意见,本文使用的各个地区上的数据的特征是一致的,可以直接使用。

III. 联邦学习

1. 整体框架

原始论文中提出的FedAvg的框架为:

客户端模型采用PyTorch搭建:

class ANN(nn.Module):
    def __init__(self, input_dim, name, B, E, type, lr):
        super(ANN, self).__init__()
        self.name = name
        self.B = B
        self.E = E
        self.len = 0
        self.type = type
        self.lr = lr
        self.loss = 0
        self.fc1 = nn.Linear(input_dim, 20)
        self.relu = nn.ReLU()
        self.sigmoid = nn.Sigmoid()
        self.dropout = nn.Dropout()
        self.fc2 = nn.Linear(20, 20)
        self.fc3 = nn.Linear(20, 20)
        self.fc4 = nn.Linear(20, 1)
    def forward(self, data):
        x = self.fc1(data)
        x = self.sigmoid(x)
        x = self.fc2(x)
        x = self.sigmoid(x)
        x = self.fc3(x)
        x = self.sigmoid(x)
        x = self.fc4(x)
        x = self.sigmoid(x)
        return x

2. 服务器端

服务器端执行以下步骤:

简单来说,每一轮通信时都只是选择部分客户端,这些客户端利用本地的数据进行参数更新,然后将更新后的参数传给服务器,服务器汇总客户端更新后的参数形成最新的全局参数。下一轮通信时,服务器端将最新的参数分发给被选中的客户端,进行下一轮更新。

3. 客户端

客户端没什么可说的,就是利用本地数据对神经网络模型的参数进行更新。

IV. 代码实现

1. 初始化

class FedAvg:
    def __init__(self, options):
        self.C = options['C']
        self.E = options['E']
        self.B = options['B']
        self.K = options['K']
        self.r = options['r']
        self.input_dim = options['input_dim']
        self.type = options['type']
        self.lr = options['lr']
        self.clients = options['clients']
        self.nn = ANN(input_dim=self.input_dim, name='server', B=B, E=E, type=self.type, lr=self.lr).to(device)
        self.nns = []
        for i in range(K):
            temp = copy.deepcopy(self.nn)
            temp.name = self.clients[i]
            self.nns.append(temp)

参数:

  • K,客户端数量,本文为10个,也就是10个地区。
  • C:选择率,每一轮通信时都只是选择C * K个客户端。
  • E:客户端更新本地模型的参数时,在本地数据集上训练E轮。
  • B:客户端更新本地模型的参数时,本地数据集batch大小为B
  • r:服务器端和客户端一共进行r轮通信。
  • clients:客户端集合。
  • type:指定数据类型,负荷预测or风功率预测。
  • lr:学习率。
  • input_dim:数据输入维度。
  • nn:全局模型。
  • nns: 客户端模型集合。

2. 服务器端

服务器端代码如下:

def server(self):
     for t in range(self.r):
          print('第', t + 1, '轮通信:')
          m = np.max([int(self.C * self.K), 1])
          # sampling
          index = random.sample(range(0, self.K), m)
          # dispatch
          self.dispatch(index)
          # local updating
          self.client_update(index)
          # aggregation
          self.aggregation(index)
     # return global model
     return self.nn

其中client_update(index):

def client_update(self, index):  # update nn
     for k in index:
          self.nns[k] = train(self.nns[k])

aggregation(index):

def aggregation(self, index):
     s = 0
     for j in index:
          # normal
          s += self.nns[j].len
     params = {}
     with torch.no_grad():
          for k, v in self.nns[0].named_parameters():
               params[k] = copy.deepcopy(v)
               params[k].zero_()
     for j in index:
          with torch.no_grad():
               for k, v in self.nns[j].named_parameters():
                    params[k] += v * (self.nns[j].len / s)
     with torch.no_grad():
          for k, v in self.nn.named_parameters():
               v.copy_(params[k])

dispatch(index):

def dispatch(self, index):
     params = {}
     with torch.no_grad():
          for k, v in self.nn.named_parameters():
               params[k] = copy.deepcopy(v)
     for j in index:
          with torch.no_grad():
               for k, v in self.nns[j].named_parameters():
                    v.copy_(params[k])

下面对重要代码进行分析:

客户端的选择

m = np.max([int(self.C * self.K), 1])
index = random.sample(range(0, self.K), m)

index中存储中m个0~10间的整数,表示被选中客户端的序号。

客户端的更新

for k in index:
    self.client_update(self.nns[k])

服务器端汇总客户端模型的参数

关于模型汇总方式,可以参考一下我的另一篇文章:对FedAvg中模型聚合过程的理解。

当然,这只是一种很简单的汇总方式,还有一些其他类型的汇总方式。

论文Electricity Consumer Characteristics Identification: A Federated Learning Approach中总结了三种汇总方式:

normal:原始论文中的方式,即根据样本数量来决定客户端参数在最终组合时所占比例。

LA:根据客户端模型的损失占所有客户端损失和的比重来决定最终组合时参数所占比例。

LS:根据损失与样本数量的乘积所占的比重来决定。 将更新后的参数分发给被选中的客户端

def dispatch(self, index):
     params = {}
     with torch.no_grad():
          for k, v in self.nn.named_parameters():
               params[k] = copy.deepcopy(v)
     for j in index:
          with torch.no_grad():
               for k, v in self.nns[j].named_parameters():
                    v.copy_(params[k])

3. 客户端

客户端只需要利用本地数据来进行更新就行了:

def client_update(self, index):  # update nn
     for k in index:
          self.nns[k] = train(self.nns[k])

其中train():

def train(ann):
    ann.train()
    # print(p)
    if ann.type == 'load':
        Dtr, Dte = nn_seq(ann.name, ann.B, ann.type)
    else:
        Dtr, Dte = nn_seq_wind(ann.named, ann.B, ann.type)
    ann.len = len(Dtr)
    # print(len(Dtr))
    loss_function = nn.MSELoss().to(device)
    loss = 0
    optimizer = torch.optim.Adam(ann.parameters(), lr=ann.lr)
    for epoch in range(ann.E):
        cnt = 0
        for (seq, label) in Dtr:
            cnt += 1
            seq = seq.to(device)
            label = label.to(device)
            y_pred = ann(seq)
            loss = loss_function(y_pred, label)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        print('epoch', epoch, ':', loss.item())
    return ann

4. 测试

def global_test(self):
     model = self.nn
     model.eval()
     c = clients if self.type == 'load' else clients_wind
     for client in c:
          model.name = client
          test(model)

V. 实验及结果

本次实验的参数选择为:

K C E B r
10 0.5 50 50 5
if __name__ == '__main__':
    K, C, E, B, r = 10, 0.5, 50, 50, 5
    type = 'load'
    input_dim = 30 if type == 'load' else 28
    _client = clients if type == 'load' else clients_wind
    lr = 0.08
    options = {'K': K, 'C': C, 'E': E, 'B': B, 'r': r, 'type': type, 'clients': _client,
               'input_dim': input_dim, 'lr': lr}
    fedavg = FedAvg(options)
    fedavg.server()
    fedavg.global_test()

各个客户端单独训练(训练50轮,batch大小为50)后在本地的测试集上的表现为:

客户端编号 1 2 3 4 5 6 7 8 9 10
MAPE / % 5.33 4.11 3.03 4.20 3.02 2.70 2.94 2.99 2.30 4.10

可以看到,由于各个客户端的数据都十分充足,所以每个客户端自己训练的本地模型的预测精度已经很高了。

服务器与客户端通信5轮后,服务器上的全局模型在10个客户端测试集上的表现如下所示:

客户端编号 1 2 3 4 5 6 7 8 9 10
MAPE / % 6.84 4.54 3.56 5.11 3.75 4.47 4.30 3.90 3.15 4.58

可以看到,经过联邦学习框架得到全局模型在各个客户端上表现同样很好ÿ0c;这是因为十个地区上的数据分布类似。

给出numpy和PyTorch的对比:

客户端编号 1 2 3 4 5 6 7 8 9 10
本地 5.33 4.11 3.03 4.20 3.02 2.70 2.94 2.99 2.30 4.10
numpy 6.58 4.19 3.17 5.13 3.58 4.69 4.71 3.75 2.94 4.77
PyTorch 6.84 4.54 3.56 5.11 3.75 4.47 4.30 3.90 3.15 4.58

同样本地模型的效果是最好的,PyTorch搭建的网络和numpy搭建的网络效果差不多,但推荐使用PyTorch,不要造轮子。

VI. 源码及数据

我把数据和代码放在了GitHub上:源码及数据,原创不易,下载时请随手给个follow和star,感谢!

以上就是PyTorch实现联邦学习的基本算法FedAvg的详细内容,更多关于PyTorch实现FedAvg算法的资料请关注我们其它相关文章!

(0)

相关推荐

  • 联邦学习FedAvg中模型聚合过程的理解分析

    目录 问题 聚合 1. 聚合所有客户端 2. 仅聚合被选中的客户端 3. 选择 问题 联邦学习原始论文中给出的FedAvg的算法框架为: 参数介绍: K 表示客户端的个数, B表示每一次本地更新时的数据量, E 表示本地更新的次数, η表示学习率. 首先是服务器执行以下步骤: 对每一个本地客户端来说,要做的就是更新本地参数,具体来讲: 把自己的数据集按照参数B分成若干个块,每一块大小都为B. 对每一块数据,需要进行E轮更新:算出该块数据损失的梯度,然后进行梯度下降更新,得到新的本地 w . 更新

  • 联邦学习论文解读分散数据的深层网络通信

    目录 前言 Abstract Introduction Federated Learning Privacy Federated Optimization The FederatedAveraging Algorithm Experimental Results Increasing parallelism Increasing computation per client Can we over-optimize on the client datasets? Conclusions and

  • 联邦学习神经网络FedAvg算法实现

    目录 I. 前言 II. 数据介绍 1. 特征构造 III. 联邦学习 1. 整体框架 2. 服务器端 3. 客户端 4. 代码实现 4.1 初始化 4.2 服务器端 4.3 客户端 4.4 测试 IV. 实验及结果 V. 源码及数据 I. 前言 联邦学习(Federated Learning) 是人工智能的一个新的分支,这项技术是谷歌2016年于论文 Communication-Efficient Learning of Deep Networks from Decentralized Dat

  • PyTorch实现联邦学习的基本算法FedAvg

    目录 I. 前言 II. 数据介绍 特征构造 III. 联邦学习 1. 整体框架 2. 服务器端 3. 客户端 IV. 代码实现 1. 初始化 2. 服务器端 3. 客户端 4. 测试 V. 实验及结果 VI. 源码及数据 I. 前言 在之前的一篇博客联邦学习基本算法FedAvg的代码实现中利用numpy手搭神经网络实现了FedAvg,手搭的神经网络效果已经很好了,不过这还是属于自己造轮子,建议优先使用PyTorch来实现. II. 数据介绍 联邦学习中存在多个客户端,每个客户端都有自己的数据集

  • FedAvg联邦学习FedProx异质网络优化实验总结

    目录 前言 I. FedAvg II. FedProx III. 实验 IV. 总结 前言 题目: Federated Optimization for Heterogeneous Networks 会议: Conference on Machine Learning and Systems 2020 论文地址:Federated Optimization for Heterogeneous Networks FedAvg对设备异质性和数据异质性没有太好的解决办法,FedProx在FedAvg的

  • PyTorch实现FedProx联邦学习算法

    目录 I. 前言 III. FedProx 1. 模型定义 2. 服务器端 3. 客户端更新 IV. 完整代码 I. 前言 FedProx的原理请见:FedAvg联邦学习FedProx异质网络优化实验总结 联邦学习中存在多个客户端,每个客户端都有自己的数据集,这个数据集他们是不愿意共享的. 数据集为某城市十个地区的风电功率,我们假设这10个地区的电力部门不愿意共享自己的数据,但是他们又想得到一个由所有数据统一训练得到的全局模型. III. FedProx 算法伪代码: 1. 模型定义 客户端的模

  • 知识蒸馏联邦学习的个性化技术综述

    目录 前言 摘要 I. 引言 II. 个性化需求 III. 方法 A. 添加用户上下文 B. 迁移学习 C. 多任务学习 D. 元学习 E. 知识蒸馏 F. 基础+个性化层 G. 全局模型和本地模型混合 IV. 总结 前言 题目: Survey of Personalization Techniques for FederatedLearning 会议: 2020 Fourth World Conference on Smart Trends in Systems, Security and S

  • Python集成学习之Blending算法详解

    一.前言 普通机器学习:从训练数据中学习一个假设. 集成方法:试图构建一组假设并将它们组合起来,集成学习是一种机器学习范式,多个学习器被训练来解决同一个问题. 集成方法分类为: Bagging(并行训练):随机森林 Boosting(串行训练):Adaboost; GBDT; XgBoost Stacking: Blending: 或者分类为串行集成方法和并行集成方法 1.串行模型:通过基础模型之间的依赖,给错误分类样本一个较大的权重来提升模型的性能. 2.并行模型的原理:利用基础模型的独立性,

  • 快速学习六大排序算法

    目录 1. 插入排序 2.希尔排序 3.选择排序 4.冒泡排序 5.堆排序 6.快速排序 6.1 hoare版本(左右指针法) 6.2 挖坑法 6.3 前后指针法 1. 插入排序 步骤: 1.从第一个元素开始,该元素可以认为已经被排序 2.取下一个元素tem,从已排序的元素序列从后往前扫描 3.如果该元素大于tem,则将该元素移到下一位 4.重复步骤3,直到找到已排序元素中小于等于tem的元素 5.tem插入到该元素的后面,如果已排序所有元素都大于tem,则将tem插入到下标为0的位置 6.重复

  • Python深度强化学习之DQN算法原理详解

    目录 1 DQN算法简介 2 DQN算法原理 2.1 经验回放 2.2 目标网络 3 DQN算法伪代码 DQN算法是DeepMind团队提出的一种深度强化学习算法,在许多电动游戏中达到人类玩家甚至超越人类玩家的水准,本文就带领大家了解一下这个算法,论文的链接见下方. 论文:Human-level control through deep reinforcement learning | Nature 代码:后续会将代码上传到Github上... 1 DQN算法简介 Q-learning算法采用一

随机推荐