python使用bs4爬取boss直聘静态页面

思路:

  1、将需要查询城市列表,通过城市接口转换成相应的code码

  2、遍历城市、职位生成url

  3、通过url获取列表页面信息,遍历列表页面信息

  4、再根据列表页面信息的job_link获取详情页面信息,将需要的信息以字典data的形式存在列表datas里  

  5、判断列表页面是否有下一页,重复步骤3、4;同时将列表datas一直传递下去

  6、一个城市、职位url爬取完后,将列表datas接在列表datas_list后面,重复3、4、5

  7、最后将列表datas_list的数据,遍历写在Excel里面

知识点:

  1、将response内容以json形式输出,解析json并取值

  2、soup 的select()和find_all()和find()方法使用

  3、异常Exception的使用

  4、wldt创建编辑Excel的使用

import requests, time, xlwt
from bs4 import BeautifulSoup

class MyJob():
  def __init__(self, mycity, myquery):
    self.city = mycity
    self.query = myquery
    self.list_url = "https://www.zhipin.com/job_detail/?query=%s&city=%s&industry=&position="%(self.query, self.city)
    self.datas = []
    self.header = {
      'authority': 'www.zhipin.com',
      'method': 'GET',
      'scheme': 'https',
      'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8',
      'accept-encoding': 'gzip, deflate, br',
      'accept-language': 'zh-CN,zh;q=0.9',
      'cache-control': 'max-age=0',
      'cookie': 'lastCity=101210100;uab_collina=154408714637849548916323;toUrl=/;c=1558272251;g=-;l=l=%2Fwww.zhipin.com%2Fuser%2Flogin.html&r=; Hm_lvt_194df3105ad7148dcf2b98a91b5e727a=1555852331,1556985726,1558169427,1558272251; __a=40505844.1544087205.1558169426.1558272251.41.14.4.31; Hm_lpvt_194df3105ad7148dcf2b98a91b5e727a=1558272385',
      'referer': 'https://www.zhipin.com/?ka=header-logo',
      'upgrade-insecure-requests': '1',
      'user-agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.110 Safari/537.36'
    }

  #将城市转化为code码
  def get_city(self,city_list):
    city_url = "https://www.zhipin.com/wapi/zpCommon/data/city.json" #获取城市
    json = requests.get(city_url).json()
    zpData = json["zpData"]["cityList"]
    list = []
    for city in city_list :
      for data_sf in zpData:
        for data_dq in data_sf["subLevelModelList"]:
          if city == data_dq["name"]:
             list.append(data_dq["code"])
    return list

  #获取所有页内容
  def get_job_list(self, url, datas):
    print(url)
    html = requests.get(url, headers=self.header).text
    soup = BeautifulSoup(html, 'html.parser')
    jobs = soup.select(".job-primary")
    for job in jobs:
      data = {}
      # 招聘id
      data["job_id"] = job.find_all("div", attrs={"class": "info-primary"})[0].find("a").get("data-jobid")
      # 招聘链接
      data["job_link"] = "https://www.zhipin.com" + job.find_all("div", attrs={"class": "info-primary"})[0].find("a").get("href")
      # 招聘岗位
      data["job_name"] = job.find_all("div", attrs={"class": "info-primary"})[0].find("div", attrs={"class": "job-title"}).get_text()
      # 薪资
      data["job_red"] = job.find_all("div", attrs={"class": "info-primary"})[0].find("span", attrs={"class": "red"}).get_text()
      # 地址 #工作年限 #学历
      data["job_address"] = job.find_all("div", attrs={"class": "info-primary"})[0].find("p").get_text().split(" ")
      # 企业链接
      data["job_company_link"] = job.find_all("div", attrs={"class": "info-company"})[0].find("a").get("href")
      # 企业信息
      data["job_company"] = job.find_all("div", attrs={"class": "info-company"})[0].find("p").get_text().split(" ")
      # boss链接
      data["job_publis_link"] = job.find_all("div", attrs={"class": "info-publis"})[0].find("img").get("src")
      # boos信息
      data["job_publis"] = job.find_all("div", attrs={"class": "info-publis"})[0].find("h3").get_text().split(" ")
      time.sleep(5)
      self.get_job_detail(data) # 获取job详情页内容
      print(data)
      datas.append(data) # 将某条job添加到datas中,直到将当前页添加完

    try:
      next_url = soup.find("div", attrs={"class": "page"}).find("a", attrs={"class": "next"}).get("href")
      #if next_url[-1] =="3": # 第二页自动抛异常
      if next_url in "javascript:;": # 最后一页自动抛异常
        raise Exception()
    except Exception as e:
      print("最后一页了;%s" % e)
      return datas # 返回所有页内容
    else:
      time.sleep(5)
      next_url = "https://www.zhipin.com" + next_url
      self.get_job_list(next_url, datas)
      return datas # 返回所有页内容

  #获取详情页内容
  def get_job_detail(self, data):
    print(data["job_link"])
    html = requests.get(data["job_link"], headers=self.header).text
    soup = BeautifulSoup(html, 'html.parser')
    # 招聘公司
    data["detail_content_name"] = soup.find_all("div", attrs={"class": "detail-content"})[0].find("div", attrs={"class": "name"}).get_text()
    # 福利
    data["detail_primary_tags"] = soup.find_all("div", attrs={"class": "info-primary"})[0].find("div", attrs={"class": "job-tags"}).get_text().strip()
    # 招聘岗位
    data["detail_primary_name"] = soup.find_all("div", attrs={"class": "info-primary"})[0].find("h1").get_text()
    # 招聘状态
    data["detail_primary_status"] = soup.find_all("div", attrs={"class": "info-primary"})[0].find("div", attrs={"class": "job-status"}).get_text()
    # 薪资
    data["detail_primary_salary"] = soup.find_all("div", attrs={"class": "info-primary"})[0].find("span", attrs={"class": "salary"}).get_text()
    # 地址 #工作年限 #学历
    data["detail_primary_address"] = soup.find_all("div", attrs={"class": "info-primary"})[0].find("p").get_text()
    # 工作地址
    data["detail_content_address"] = soup.find_all("div", attrs={"class": "detail-content"})[0].find("div", attrs={"class": "location-address"}).get_text()
    # 职位描述
    data["detail_content_text"] = soup.find_all("div", attrs={"class": "detail-content"})[0].find("div", attrs={"class": "text"}).get_text().strip().replace(";", "\n")
    # boss名字
    data["detail_op_name"] = soup.find_all("div", attrs={"class": "detail-op"})[1].find("h2", attrs={"class": "name"}).get_text()
    # boss职位
    data["detail_op_job"] = soup.find_all("div", attrs={"class": "detail-op"})[1].find("p", attrs={"class": "gray"}).get_text().split("·")[0]
    # boss状态
    data["detail_op_status"] = soup.find_all("div", attrs={"class": "detail-op"})[1].find("p", attrs={"class": "gray"}).get_text().split("·")[1]

  #将获取的数据写入Excel
  def setExcel(self, datas_list):
    book = xlwt.Workbook(encoding='utf-8')
    table = book.add_sheet("boss软件测试")
    table.write(0, 0, "编号")
    table.write(0, 1, "招聘链接")
    table.write(0, 2, "招聘岗位")
    table.write(0, 3, "薪资")
    table.write(0, 4, "地址")
    table.write(0, 5, "企业链接")
    table.write(0, 6, "企业信息")
    table.write(0, 7, "boss链接")
    table.write(0, 8, "boss信息")
    table.write(0, 9, "detail详情")
    i = 1
    for data in datas_list:
      table.write(i, 0, data["job_id"])
      table.write(i, 1, data["job_link"])
      table.write(i, 2, data["job_name"])
      table.write(i, 3, data["job_red"])
      table.write(i, 4, data["job_address"])
      table.write(i, 5, data["job_company_link"])
      table.write(i, 6, data["job_company"])
      table.write(i, 7, data["job_publis_link"])
      table.write(i, 8, data["job_publis"])

      table.write(i, 10, data["detail_content_name"])
      table.write(i, 11, data["detail_primary_name"])
      table.write(i, 12, data["detail_primary_status"])
      table.write(i, 13, data["detail_primary_salary"])
      table.write(i, 14, data["detail_primary_address"])
      table.write(i, 15, data["detail_content_text"])
      table.write(i, 16, data["detail_op_name"])
      table.write(i, 17, data["detail_op_job"])
      table.write(i, 18, data["detail_op_status"])
      table.write(i, 19, data["detail_primary_tags"])
      table.write(i, 20, data["detail_content_address"])
      i += 1
    book.save(r'C:\%s_boss软件测试.xls' % time.strftime('%Y%m%d%H%M%S'))
    print("Excel保存成功")

if __name__ == '__main__':
  city_list = MyJob("","").get_city(["杭州"])
  query_list = ["软件测试", "测试工程师"]
  datas_list = []
  for city in city_list:
    for query in query_list:
      myjob = MyJob(city, query)
      datas = myjob.get_job_list(myjob.list_url, myjob.datas)
      datas_list.extend(datas)
  myjob.setExcel(datas_list)

以上就是python使用bs4爬取boss直聘静态页面的详细内容,更多关于python 爬取boss直聘的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python使用bs4获取58同城城市分类的方法

    本文实例讲述了Python使用bs4获取58同城城市分类的方法.分享给大家供大家参考.具体如下: # -*- coding:utf-8 -*- #! /usr/bin/python import urllib import os, datetime, sys from bs4 import BeautifulSoup reload(sys) sys.setdefaultencoding( "utf-8" ) __BASEURL__ = "http://bj.58.com/&q

  • 浅谈Python中的bs4基础

    安装 在命令提示符框中直接输入pip install beautifulsoup4 介绍 beautifulsoup是python的一个第三方库,和xpath一样,都是用来解析html数据的. 引入 from bs4 import BeautifulSoup 使用 将一段文档传入BeautifulSoup的构造方法,就能得到一个文档的对象. bs = BeautifulSoup(open('index.html',encoding='utf-8'),'lxml') print(bs) 注意:这样

  • python2使用bs4爬取腾讯社招过程解析

    目的:获取腾讯社招这个页面的职位名称及超链接 职位类别 人数 地点和发布时间 要求:使用bs4进行解析,并把结果以json文件形式存储 注意:如果直接把python列表没有序列化为json数组,写入到json文件,会产生中文写不进去到文件,所以要序列化并进行utf-8编码后写入文件. # -*- coding:utf-8 -*- import requests from bs4 import BeautifulSoup as bs import json url = 'https://hr.te

  • Python爬虫使用bs4方法实现数据解析

    聚焦爬虫: 爬取页面中指定的页面内容. 编码流程: 1.指定url 2.发起请求 3.获取响应数据 4.数据解析 5.持久化存储 数据解析分类: 1.bs4 2.正则 3.xpath (***) 数据解析原理概述: 解析的局部的文本内容都会在标签之间或者标签对应的属性中进行存储 1.进行指定标签的定位 2.标签或者标签对应的属性中存储的数据值进行提取(解析) bs4进行数据解析数据解析的原理: 1.标签定位 2.提取标签.标签属性中存储的数据值 bs4数据解析的原理: 1.实例化一个Beauti

  • Python BS4库的安装与使用详解

    Beautiful Soup 库一般被称为bs4库,支持Python3,是我们写爬虫非常好的第三方库.因用起来十分的简便流畅.所以也被人叫做"美味汤".目前bs4库的最新版本是4.60.下文会介绍该库的最基本的使用,具体详细的细节还是要看:[官方文档](Beautiful Soup Documentation) bs4库的安装 Python的强大之处就在于他作为一个开源的语言,有着许多的开发者为之开发第三方库,这样我们开发者在想要实现某一个功能的时候,只要专心实现特定的功能,其他细节与

  • Scrapy框架爬取Boss直聘网Python职位信息的源码

    分析 使用CrawlSpider结合LinkExtractor和Rule爬取网页信息 LinkExtractor用于定义链接提取规则,一般使用allow参数即可 LinkExtractor(allow=(), # 使用正则定义提取规则 deny=(), # 排除规则 allow_domains=(), # 限定域名范围 deny_domains=(), # 排除域名范围 restrict_xpaths=(), # 使用xpath定义提取队则 tags=('a', 'area'), attrs=(

  • python利用re,bs4,requests模块获取股票数据

    今天闲来无聊无意间看到了百度股票,就想着用python爬一下数据,于是就找到了东方财经网,结合这两个网站,写了一个小爬虫,数据保存在文件中,比较简单的示例,就当做用来练习正则表达式和BeautifulSoupl了. 首先页面分析,打开东方财经网股票列表页, 和百度股票详情页 ,右键查看网页源代码, 网址后面的代码就是股票代码,所以打算先获取股票代码,然后获取详情,废话少说,直接上代码吧: import re import requests from bs4 import BeautifulSou

  • python中bs4.BeautifulSoup的基本用法

    导入模块 from bs4 import BeautifulSoup soup = BeautifulSoup(html_doc,"html.parser") 下面看下常见的用法 print(soup.a) # 拿到soup中的第一个a标签 print(soup.a.name) # 获取a标签的名称 print(soup.a.string) # 获取a标签的文本内容 print(soup.a.text) # 获取a标签的文本内容 print(soup.a["href"

  • python使用bs4爬取boss直聘静态页面

    思路: 1.将需要查询城市列表,通过城市接口转换成相应的code码 2.遍历城市.职位生成url 3.通过url获取列表页面信息,遍历列表页面信息 4.再根据列表页面信息的job_link获取详情页面信息,将需要的信息以字典data的形式存在列表datas里 5.判断列表页面是否有下一页,重复步骤3.4:同时将列表datas一直传递下去 6.一个城市.职位url爬取完后,将列表datas接在列表datas_list后面,重复3.4.5 7.最后将列表datas_list的数据,遍历写在Excel

  • Python数据分析之Python和Selenium爬取BOSS直聘岗位

    一.数据爬取的代码 #encoding='utf-8' from selenium import webdriver import time import re import pandas as pd import os def close_windows(): #如果有登录弹窗,就关闭 try: time.sleep(0.5) if dr.find_element_by_class_name("jconfirm").find_element_by_class_name("c

  • python 爬虫一键爬取 淘宝天猫宝贝页面主图颜色图和详情图的教程

    实例如下所示: import requests import re,sys,os import json import threading import pprint class spider: def __init__(self,sid,name): self.id = sid self.headers = { "Accept":"text/html,application/xhtml+xml,application/xml;", "Accept-Enc

  • Python探索之爬取电商售卖信息代码示例

    网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种按照一定的规则,自动的抓取万维网信息的程序或者脚本. 下面有一个示例代码,分享给大家: #! /usr/bin/env python # encoding = 'utf-8'# Filename: spider_58center_sth.py from bs4 import BeautifulSoup import time import requests url_58 = 'http://nj.58.c

  • Python爬虫实现爬取京东手机页面的图片(实例代码)

    实例如下所示: __author__ = 'Fred Zhao' import requests from bs4 import BeautifulSoup import os from urllib.request import urlretrieve class Picture(): def __init__(self): self.headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_0) AppleW

  • python 爬取学信网登录页面的例子

    我们以学信网为例爬取个人信息 **如果看不清楚 按照以下步骤:** 1.火狐为例 打开需要登录的网页–> F12 开发者模式 (鼠标右击,点击检查元素)–点击网络 –>需要登录的页面登录下–> 点击网络找到 一个POST提交的链接点击–>找到post(注意该post中信息就是我们提交时需要构造的表单信息) import requests from bs4 import BeautifulSoup from http import cookies import urllib impo

  • python爬虫之爬取百度音乐的实现方法

    在上次的爬虫中,抓取的数据主要用到的是第三方的Beautifulsoup库,然后对每一个具体的数据在网页中的selecter来找到它,每一个类别便有一个select方法.对网页有过接触的都知道很多有用的数据都放在一个共同的父节点上,只是其子节点不同.在上次爬虫中,每一类数据都要从其父类(包括其父节点的父节点)上往下寻找ROI数据所在的子节点,这样就会使爬虫很臃肿,因为很多数据有相同的父节点,每次都要重复的找到这个父节点.这样的爬虫效率很低. 因此,笔者在上次的基础上,改进了一下爬取的策略,笔者以

  • python实现的爬取电影下载链接功能示例

    本文实例讲述了python实现的爬取电影下载链接功能.分享给大家供大家参考,具体如下: #!/usr/bin/python #coding=UTF-8 import sys import urllib2 import os import chardet from bs4 import BeautifulSoup reload(sys) sys.setdefaultencoding("utf-8") #从电影html页面中获取视频下载地址 def get_movie_download_u

  • Python实现的爬取百度文库功能示例

    本文实例讲述了Python实现的爬取百度文库功能.分享给大家供大家参考,具体如下: # -*- coding: utf-8 -*- from selenium import webdriver from bs4 import BeautifulSoup from docx import Document from docx.enum.text import WD_ALIGN_PARAGRAPH# 用来居中显示标题 from time import sleep from selenium.webd

随机推荐