小 200 行 Python 代码制作一个换脸程序

简介

在这篇文章中我将介绍如何写一个简短(200行)的 Python 脚本,来自动地将一幅图片的脸替换为另一幅图片的脸。

这个过程分四步:

  • 检测脸部标记。
  • 旋转、缩放、平移和第二张图片,以配合第一步。
  • 调整第二张图片的色彩平衡,以适配第一张图片。
  • 把第二张图像的特性混合在第一张图像中。

1.使用 dlib 提取面部标记

该脚本使用 dlib 的 Python 绑定来提取面部标记:

Dlib 实现了 Vahid Kazemi 和 Josephine Sullivan 的《使用回归树一毫秒脸部对准》论文中的算法。算法本身非常复杂,但dlib接口使用起来非常简单:

PREDICTOR_PATH = "/home/matt/dlib-18.16/shape_predictor_68_face_landmarks.dat"
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(PREDICTOR_PATH)
def get_landmarks(im):
  rects = detector(im, 1)
  if len(rects) > 1:
    raise TooManyFaces
  if len(rects) == 0:
    raise NoFaces
  return numpy.matrix([[p.x, p.y] for p in predictor(im, rects[0]).parts()]) 

get_landmarks()函数将一个图像转化成numpy数组,并返回一个68×2元素矩阵,输入图像的每个特征点对应每行的一个x,y坐标。

特征提取器(predictor)需要一个粗糙的边界框作为算法输入,由一个传统的能返回一个矩形列表的人脸检测器(detector)提供,其每个矩形列表在图像中对应一个脸。

2.用 Procrustes 分析调整脸部

现在我们已经有了两个标记矩阵,每行有一组坐标对应一个特定的面部特征(如第30行的坐标对应于鼻头)。我们现在要解决如何旋转、翻译和缩放第一个向量,使它们尽可能适配第二个向量的点。一个想法是可以用相同的变换在第一个图像上覆盖第二个图像。

将这个问题数学化,寻找T,s 和 R,使得下面这个表达式:

结果最小,其中R是个2×2正交矩阵,s是标量,T是二维向量,pi和qi是上面标记矩阵的行。

事实证明,这类问题可以用“常规 Procrustes 分析法”解决:

def transformation_from_points(points1, points2):
  points1 = points1.astype(numpy.float64)
  points2 = points2.astype(numpy.float64)
  c1 = numpy.mean(points1, axis=0)
  c2 = numpy.mean(points2, axis=0)
  points1 -= c1
  points2 -= c
  s1 = numpy.std(points1)
  s2 = numpy.std(points2)
  points1 /= s1
  points2 /= s2
  U, S, Vt = numpy.linalg.svd(points1.T * points2)
  R = (U * Vt).T
  return numpy.vstack([numpy.hstack(((s2 / s1) * R,
                    c2.T - (s2 / s1) * R * c1.T)),
             numpy.matrix([0., 0., 1.])]) 

代码实现了这几步:

  • 将输入矩阵转换为浮点数。这是后续操作的基础。
  • 每一个点集减去它的矩心。一旦为点集找到了一个最佳的缩放和旋转方法,这两个矩心 c1 和 c2 就可以用来找到完整的解决方案。
  • 同样,每一个点集除以它的标准偏差。这会消除组件缩放偏差的问题。
  • 使用奇异值分解计算旋转部分。可以在维基百科上看到关于解决正交 Procrustes 问题的细节。
  • 利用仿射变换矩阵返回完整的转化。

其结果可以插入 OpenCV 的 cv2.warpAffine 函数,将图像二映射到图像一:

def warp_im(im, M, dshape):
  output_im = numpy.zeros(dshape, dtype=im.dtype)
  cv2.warpAffine(im,
          M[:2],
          (dshape[1], dshape[0]),
          dst=output_im,
          borderMode=cv2.BORDER_TRANSPARENT,
          flags=cv2.WARP_INVERSE_MAP)
  return output_im 

对齐结果如下:

3.校正第二张图像的颜色

如果我们试图直接覆盖面部特征,很快会看到这个问题:

这个问题是两幅图像之间不同的肤色和光线造成了覆盖区域的边缘不连续。我们试着修正:

COLOUR_CORRECT_BLUR_FRAC = 0.6
LEFT_EYE_POINTS = list(range(42, 48))
RIGHT_EYE_POINTS = list(range(36, 42))
def correct_colours(im1, im2, landmarks1):
  blur_amount = COLOUR_CORRECT_BLUR_FRAC * numpy.linalg.norm(
               numpy.mean(landmarks1[LEFT_EYE_POINTS], axis=0) -
               numpy.mean(landmarks1[RIGHT_EYE_POINTS], axis=0))
  blur_amount = int(blur_amount)
  if blur_amount % 2 == 0:
    blur_amount += 1
  im1_blur = cv2.GaussianBlur(im1, (blur_amount, blur_amount), 0)
  im2_blur = cv2.GaussianBlur(im2, (blur_amount, blur_amount), 0)
  # Avoid divide-by-zero errors.
  im2_blur += 128 * (im2_blur <= 1.0)
  return (im2.astype(numpy.float64) * im1_blur.astype(numpy.float64) /
                        im2_blur.astype(numpy.float64)) 

结果如下:

此函数试图改变 im2 的颜色来适配 im1。它通过用 im2 除以 im2 的高斯模糊值,然后乘以im1的高斯模糊值。这里的想法是用RGB缩放校色,但并不是用所有图像的整体常数比例因子,每个像素都有自己的局部比例因子。

用这种方法两图像之间光线的差异只能在某种程度上被修正。例如,如果图像1是从一侧照亮,但图像2是被均匀照亮的,色彩校正后图像2也会出现未照亮一侧暗一些的问题。

也就是说,这是一个相当简陋的办法,而且解决问题的关键是一个适当的高斯核函数大小。如果太小,第一个图像的面部特征将显示在第二个图像中。过大,内核之外区域像素被覆盖,并发生变色。这里的内核用了一个0.6 *的瞳孔距离。

4.把第二张图像的特征混合在第一张图像中

用一个遮罩来选择图像2和图像1的哪些部分应该是最终显示的图像:

值为1(显示为白色)的地方为图像2应该显示出的区域,值为0(显示为黑色)的地方为图像1应该显示出的区域。值在0和1之间为图像1和图像2的混合区域。

我们把上述过程分解:

  • get_face_mask()的定义是为一张图像和一个标记矩阵生成一个遮罩,它画出了两个白色的凸多边形:一个是眼睛周围的区域,一个是鼻子和嘴部周围的区域。之后它由11个像素向遮罩的边缘外部羽化扩展,可以帮助隐藏任何不连续的区域。
  • 这样一个遮罩同时为这两个图像生成,使用与步骤2中相同的转换,可以使图像2的遮罩转化为图像1的坐标空间。
  • 之后,通过一个element-wise最大值,这两个遮罩结合成一个。结合这两个遮罩是为了确保图像1被掩盖,而显现出图像2的特性。

最后,使用遮罩得到最终的图像:

output_im = im1 * (1.0 - combined_mask) + warped_corrected_im2 * combined_mask 

总结

到此这篇关于小 200 行 Python 代码制作一个换脸程序的文章就介绍到这了,更多相关python 换脸程序内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 超简单使用Python换脸实例

    换脸! 这段时间,deepfakes搞得火热,比方说把<射雕英雄传>里的朱茵换成了杨幂,看下面的图!毫无违和感! 其实早在之前,基于AI换脸的技术就得到了应用,比方说<速度与激情7>里面的演员保罗.沃克,由于发生意外, 后期的视频都是由他的兄弟完成拍摄,然后再对其换脸,最终也就是我们影院看到的效果. 当然,也有人把这项技术应用在其他的领域,例如把某种电影的女主换成了盖尔.加朵(<神奇女侠>的扮演者),,, 这真的是对"技术是一把又刃剑"阐述的十分到位

  • Python实现AI换脸功能

    需要用到的接口: 获取人脸信息的接口:https://api-cn.faceplusplus.com/facepp/v3/detect 实现换脸的接口 :https://api-cn.faceplusplus.com/imagepp/v1/mergeface 代码分为三步 代码: import requests import json import simplejson import base64 #第一步:获取人脸关键点 def find_face(imgpath): """

  • 使用Python制作表情包实现换脸功能

    "表情包"是现在非常流行的交流方式,通过一张图片就能把文字不能表达或不便于表达的情感给表示出来,表情包一经诞生,就统治了中国人的社交圈,尤其是年轻人,他们的社交方式是所谓"天可不聊,图不可不斗",几乎任何对话都会出现表情包的身影,一言不合就斗图,自己也会在聊天中发几个表情包,可是总会造成一些小误会,比如下面的图 有好多朋友看到这个表情包之后误以为这也是我用Python做的,其实不然,这个图就是网上普通的表情包,但是今天我要用Python做几个表情包. 今天制作表情包

  • 小 200 行 Python 代码制作一个换脸程序

    简介 在这篇文章中我将介绍如何写一个简短(200行)的 Python 脚本,来自动地将一幅图片的脸替换为另一幅图片的脸. 这个过程分四步: 检测脸部标记. 旋转.缩放.平移和第二张图片,以配合第一步. 调整第二张图片的色彩平衡,以适配第一张图片. 把第二张图像的特性混合在第一张图像中. 1.使用 dlib 提取面部标记 该脚本使用 dlib 的 Python 绑定来提取面部标记: Dlib 实现了 Vahid Kazemi 和 Josephine Sullivan 的<使用回归树一毫秒脸部对准>

  • 200行Java代码编写一个计算器程序

    发现了大学时候写的计算器小程序,还有个图形界面,能够图形化展示表达式语法树,哈哈;) 只有200行Java代码,不但能够计算加减乘除,还能够匹配小括号~ 代码点评: 从朴素的界面配色到简单易懂错误提示,无不体现了"用户体验"至上的设计理念:代码异常处理全面合理.滴水不漏,代码缩进优雅大方,变量命名直观易懂:再结合长度适中简单明了的注释,程序整体给人一种清新脱俗之感.背后不难看出作者对学习的热爱以及对设计的苛求,工匠精神可见一斑,真可谓是大学数据结构学以致用的典范! 实现代码如下所示:

  • 200 行python 代码实现 2048 游戏

    创建游戏文件 2048.py 首先导入需要的包: import curses from random import randrange, choice from collections import defaultdict 主逻辑 用户行为 所有的有效输入都可以转换为"上,下,左,右,游戏重置,退出"这六种行为,用 actions 表示 actions = ['Up', 'Left', 'Down', 'Right', 'Restart', 'Exit'] 有效输入键是最常见的 W(上

  • 200行python代码实现2048游戏

    Python实战系列用于记录实战项目中的思路,代码实现,出现的问题与解决方案以及可行的改进方向 本文为第2篇–200行Python代码实现2048 一.分析与函数设计 1.1 游戏玩法 2048这款游戏的玩法很简单,每次可以选择上下左右滑动,每滑动一次,所有的数字方块都会往滑动的方向靠拢,系统也会在空白的地方乱数出现一个数字方块,相同数字的方块在靠拢.相撞时会相加.(介绍来自百度百科) 1.2 函数设计 _init _() 初始化4*4游戏地图,分数等游戏基本数据 is_gameover() 判

  • 十行Python代码制作一个视频倒放神器

    目录 导语 正文 源码如下 效果展示 总结 补充 导语 大家好,我是栗子同学! 今天给大家分享一个好玩的东西 让时光倒流——当当当,其实就是让视频倒放而已 正常的视频如下 倒放视频如下 效果很赞吧,等你学会了这个,你才会发现,抖音上那些杯子里的水倒流,倒着跑步等看似很炫酷很神秘的视频,其实就是一键倒放而已! 那么,今天小编就来探索Python代码如何实现这个倒放的功能叭~ 正文 这些搞笑的gif跟小视频都是将正常的流畅通过倒放产生的效果啦 其实制作起来却非常简单,原理就是将gif图片拆分出来每一

  • 利用4行Python代码监测每一行程序的运行时间和空间消耗

    Python是一个高层次的结合了解释性.编译性.互动性和面向对象的脚本语言,其具有高可扩展性和高可移植性,具有广泛的标准库,受到开发者的追捧,广泛应用于开发运维(DevOps).数据科学.网站开发和安全.然而,它没有因速度和空间而赢得任何称赞,主要原因是Python是一门动态类型语言,每一个简单的操作都需要大量的指令才能完成. 所以这更加需要开发者在使用Python语言开发项目时协调好程序运行的时间和空间. 1.分析时间耗时 分析项目消耗的时间消耗,依托于line_profiler模块,其可以计

  • 仅用500行Python代码实现一个英文解析器的教程

    语法分析器描述了一个句子的语法结构,用来帮助其他的应用进行推理.自然语言引入了很多意外的歧义,以我们对世界的了解可以迅速地发现这些歧义.举一个我很喜欢的例子: 正确的解析是连接"with"和"pizza",而错误的解析将"with"和"eat"联系在了一起: 过去的一些年,自然语言处理(NLP)社区在语法分析方面取得了很大的进展.现在,小小的 Python 实现可能比广泛应用的 Stanford 解析器表现得更出色. 文章剩下

  • 200行python代码实现贪吃蛇游戏

    本文实例为大家分享了python实现贪吃蛇游戏的具体代码,供大家参考,具体内容如下 这次我们来写一个贪吃蛇游戏 下面贴出具体代码 import pygame import time import numpy as np # 此模块包含游戏所需的常量 from pygame.locals import * # 设置棋盘的长宽 BOARDWIDTH = 48 BOARDHEIGHT = 28 # 分数 score = 0 class Food(object): def __init__(self):

  • 仅用50行Python代码实现一个简单的代理服务器

    之前遇到一个场景是这样的: 我在自己的电脑上需要用mongodb图形客户端,但是mongodb的服务器地址没有对外网开放,只能通过先登录主机A,然后再从A连接mongodb服务器B. 本来想通过ssh端口转发的,但是我没有从机器A连接ssh到B的权限.于是就自己用python写一个. 原理很简单. 1.开一个socket server监听连接请求 2.每接受一个客户端的连接请求,就往要转发的地址建一条连接请求.即client->proxy->forward.proxy既是socket服务端(监

  • 使用70行Python代码实现一个递归下降解析器的教程

     第一步:标记化 处理表达式的第一步就是将其转化为包含一个个独立符号的列表.这一步很简单,且不是本文的重点,因此在此处我省略了很多. 首先,我定义了一些标记(数字不在此中,它们是默认的标记)和一个标记类型: token_map = {'+':'ADD', '-':'ADD', '*':'MUL', '/':'MUL', '(':'LPAR', ')':'RPAR'} Token = namedtuple('Token', ['name', 'value']) 下面就是我用来标记 `expr` 表

随机推荐