深入了解NumPy 高级索引

NumPy 比一般的 Python 序列提供更多的索引方式。除了之前看到的用整数和切片的索引外,数组可以由整数数组索引、布尔索引及花式索引。

整数数组索引

以下实例获取数组中(0,0),(1,1)和(2,0)位置处的元素。

import numpy as np 

x = np.array([[1, 2], [3, 4], [5, 6]])
y = x[[0,1,2], [0,1,0]]
print (y)

输出结果为:

[1  4  5]

以下实例获取了 4X3 数组中的四个角的元素。 行索引是 [0,0] 和 [3,3],而列索引是 [0,2] 和 [0,2]。

import numpy as np 

x = np.array([[ 0, 1, 2],[ 3, 4, 5],[ 6, 7, 8],[ 9, 10, 11]])
print ('我们的数组是:' )
print (x)
print ('\n')
rows = np.array([[0,0],[3,3]])
cols = np.array([[0,2],[0,2]])
y = x[rows,cols]
print ('这个数组的四个角元素是:')
print (y)

输出结果为:

我们的数组是:
[[ 0  1  2]
 [ 3  4  5]
 [ 6  7  8]
 [ 9 10 11]]

这个数组的四个角元素是:
[[ 0  2]
 [ 9 11]]

返回的结果是包含每个角元素的 ndarray 对象。

可以借助切片 : 或 … 与索引数组组合。如下面例子:

import numpy as np

a = np.array([[1,2,3], [4,5,6],[7,8,9]])
b = a[1:3, 1:3]
c = a[1:3,[1,2]]
d = a[...,1:]
print(b)
print(c)
print(d)

输出结果为:

[[5 6]
 [8 9]]
[[5 6]
 [8 9]]
[[2 3]
 [5 6]
 [8 9]]

布尔索引

我们可以通过一个布尔数组来索引目标数组。

布尔索引通过布尔运算(如:比较运算符)来获取符合指定条件的元素的数组。

以下实例获取大于 5 的元素:

import numpy as np 

x = np.array([[ 0, 1, 2],[ 3, 4, 5],[ 6, 7, 8],[ 9, 10, 11]])
print ('我们的数组是:')
print (x)
print ('\n')
# 现在我们会打印出大于 5 的元素
print ('大于 5 的元素是:')
print (x[x > 5])

输出结果为:

我们的数组是:
[[ 0  1  2]
 [ 3  4  5]
 [ 6  7  8]
 [ 9 10 11]]

大于 5 的元素是:
[ 6  7  8  9 10 11]

以下实例使用了 ~(取补运算符)来过滤 NaN。

import numpy as np 

a = np.array([np.nan, 1,2,np.nan,3,4,5])
print (a[~np.isnan(a)])

输出结果为:

[ 1.   2.   3.   4.   5.]

以下实例演示如何从数组中过滤掉非复数元素。

import numpy as np 

a = np.array([1, 2+6j, 5, 3.5+5j])
print (a[np.iscomplex(a)])

输出如下:

[2.0+6.j  3.5+5.j]

花式索引

花式索引指的是利用整数数组进行索引。

花式索引根据索引数组的值作为目标数组的某个轴的下标来取值。对于使用一维整型数组作为索引,如果目标是一维数组,那么索引的结果就是对应位置的元素;如果目标是二维数组,那么就是对应下标的行。

花式索引跟切片不一样,它总是将数据复制到新数组中。

1、传入顺序索引数组

import numpy as np 

x=np.arange(32).reshape((8,4))
print (x[[4,2,1,7]])

输出结果为:

[[16 17 18 19]
 [ 8  9 10 11]
 [ 4  5  6  7]
 [28 29 30 31]]

2、传入倒序索引数组

import numpy as np 

x=np.arange(32).reshape((8,4))
print (x[[-4,-2,-1,-7]])

输出结果为:

[[16 17 18 19]
 [24 25 26 27]
 [28 29 30 31]
 [ 4  5  6  7]]

3、传入多个索引数组(要使用np.ix_)

import numpy as np 

x=np.arange(32).reshape((8,4))
print (x[np.ix_([1,5,7,2],[0,3,1,2])])

输出结果为:

[[ 4  7  5  6]
 [20 23 21 22]
 [28 31 29 30]
 [ 8 11  9 10]]

以上就是深入了解NumPy 高级索引的详细内容,更多关于NumPy 高级索引的资料请关注我们其它相关文章!

(0)

相关推荐

  • python中找出numpy array数组的最值及其索引方法

    在list列表中,max(list)可以得到list的最大值,list.index(max(list))可以得到最大值对应的索引 但在numpy中的array没有index方法,取而代之的是where,其又是list没有的 首先我们可以得到array在全局和每行每列的最大值(最小值同理) >>> a = np.arange(9).reshape((3,3)) >>> a array([[0, 1, 2], [9, 4, 5], [6, 7, 8]]) >>&

  • Python 获取numpy.array索引值的实例

    举个例子: q=[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15] 我想获取其中值等于7的那个值的下标,以便于用于其他计算. 如果使用np.where,如: q=np.arange(0,16,1) g=np.where(q==7) print q print g 运行结果是: [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15] (array([7]),) 显然(array([7]),)中的数字7我是没法提取出来做运算的,这是一个tuple

  • numpy中索引和切片详解

    索引和切片 一维数组 一维数组很简单,基本和列表一致. 它们的区别在于数组切片是原始数组视图(这就意味着,如果做任何修改,原始都会跟着更改). 这也意味着,如果不想更改原始数组,我们需要进行显式的复制,从而得到它的副本(.copy()). import numpy as np #导入numpy arr = np.arange(10) #类似于list的range() arr Out[3]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) arr[4] #索引(注意是从

  • 浅谈python已知元素,获取元素索引(numpy,pandas)

    目前搜索到的方法有: np.where('元素') 还有就是pandas的方法: df.index('元素') 但是第二个方法的问题就是会报错,嗯,这就比较尴尬了,查询了网上的解决方案,有这样的: 此外使用 df[df['列名'].isin([相应的值])] 这个命令会输出等于该值的行. 此外如果想快速找到dataframe最后几行的话,可以使用的方法是tail,可以获取若干行的值 以上这篇浅谈python已知元素,获取元素索引(numpy,pandas)就是小编分享给大家的全部内容了,希望能给

  • NumPy 基本切片和索引的具体使用方法

    索引和切片是NumPy中最重要最常用的操作.熟练使用NumPy切片操作是数据处理和机器学习的前提,所以一定要掌握好. 文档:https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html 索引 ndarrays可以使用标准Python x[obj]语法对其进行索引 ,其中x是数组,obj是选择方式.有三种可用的索引:字段访问,基本切片,高级索引.究竟是哪一个取决于obj. 注意 在Python中,x[(exp1, exp2, ...

  • numpy中实现ndarray数组返回符合特定条件的索引方法

    在numpy的ndarray类型中,似乎没有直接返回特定索引的方法,我只找到了where函数,但是where函数对于寻找某个特定值对应的索引很有用,对于返回一定区间内值的索引不是很有效,至少我没有弄明白应该如何操作尴尬.下面先说一下where函数的用法吧. (1)where函数的使用场景: 例如现在我生成了一个数组: import numpy as np arr=np.array([1,1,1,134,45,3,46,45,65,3,23424,234,12,12,3,546,1,2]) 现在a

  • python numpy数组的索引和切片的操作方法

    NumPy - 简介 NumPy 是一个 Python 包. 它代表 "Numeric Python". 它是一个由多维数组对象和用于处理数组的例程集合组成的库. Numeric,即 NumPy 的前身,是由 Jim Hugunin 开发的. 也开发了另一个包 Numarray ,它拥有一些额外的功能. 2005年,Travis Oliphant 通过将 Numarray 的功能集成到 Numeric 包中来创建 NumPy 包. 这个开源项目有很多贡献者. NumPy 操作 使用Nu

  • numpy:找到指定元素的索引示例

    目的:在numpy数组中知道指定元素的索引 函数: np.argwhere >>>x >>>array([[0, 1, 2], [3, 4, 5]]) >>>np.argwhere(x>1) >>>array([[0, 2], [1, 0], [1, 1], [1, 2]]) 以上这篇numpy:找到指定元素的索引示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • 深入了解NumPy 高级索引

    NumPy 比一般的 Python 序列提供更多的索引方式.除了之前看到的用整数和切片的索引外,数组可以由整数数组索引.布尔索引及花式索引. 整数数组索引 以下实例获取数组中(0,0),(1,1)和(2,0)位置处的元素. import numpy as np x = np.array([[1, 2], [3, 4], [5, 6]]) y = x[[0,1,2], [0,1,0]] print (y) 输出结果为: [1  4  5] 以下实例获取了 4X3 数组中的四个角的元素. 行索引是

  • Python中11种NumPy高级操作总结

    目录 1.数组上的迭代 2.数组形状修改函数 1.ndarray.reshape 2.ndarray.flat 3.ndarray.flatten 3.数组翻转操作函数 1.numpy.transpose 2. numpy.ndarray.T 3.numpy.swapaxes 4.numpy.rollaxis 4.数组修改维度函数 1.numpy.broadcast_to 2.numpy.expand_dims 3.numpy.squeeze 5.数组的连接操作 1.numpy.stack 2.

  • Numpy 数组索引的实现

    目录 一.整数索引 二.切片索引 2.1.一维数组切片 三.整数数组索引 3.1. 一维数组的整数数组索引 3.2.多维数组的整数数组索引 四.布尔索引 五.花式索引 数组索引是指使用方括号([])来索引数组值,numpy提供了比常规的python序列更多的索引工具.除了按整数和切片索引之外,数组可以由整数数组索引.布尔索引及花式索引.下面逐一学习. 一.整数索引 这种机制有助于基于 N 维索引来获取数组中任意元素. 每个整数数组表示该维度的下标值. 当索引的元素个数就是目标ndarray的维度

  • Python NumPy 数组索引的示例详解

    目录 前言 1.访问数组元素 2.访问 2-D Arrays(数组) 3.访问 3-D Arrays(数组) 4.负索引 前言 NumPy(Numerical Python的缩写)是一个开源的Python科学计算库.使用NumPy,就可以很自然地使用数组和矩阵.NumPy包含很多实用的数学函数,涵盖线性代数运算.傅里叶变换和随机数生成等功能.本文主要介绍Python NumPy 数组索引及访问数组元素. 1.访问数组元素 数组索引与访问数组元素相同. 您可以通过引用其索引号来访问数组元素. Nu

  • python数学建模是加深Numpy和Pandas学习

    目录 前言 Numpy 学习 1-numpy.array 2-numpy.empty 3-numpy.zeros 4-numpy.ones NumPy 从已有的数组创建数组 1-numpy.asarray 2-numpy.frombuffer 3-numpy.fromiter NumPy 从数值范围创建数组 1-numpy.arange 2-numpy.linspace 3-numpy.logspace 综合运用[array.arange.linspace.lonspace]: 综合运用[one

  • Python Numpy学习之索引及切片的使用方法

    目录 1. 索引及切片 2. 高级索引 1. 索引及切片 数组中的元素可以通过索引以及切片的手段进行访问或者修改,和列表的切片操作一样. 下面直接使用代码进行实现,具体操作方式以及意义以代码注释为准: (1)通过下标以及内置函数进行索引切片 """ Author:XiaoMa date:2021/12/30 """ import numpy as np a = np.arange(10)#创建一个从0-9的一维数组 print(a) i = sl

  • Python NumPy教程之索引详解

    目录 为什么我们需要 NumPy 使用索引数组进行索引 索引类型 基本切片和索引 高级索引 NumPy 或 Numeric Python 是一个用于计算同质 n 维数组的包.在 numpy 维度中称为轴. 为什么我们需要 NumPy 出现了一个问题,当 python 列表已经存在时,为什么我们需要 NumPy.答案是我们不能直接对两个列表的所有元素执行操作.例如,我们不能直接将两个列表相乘,我们必须逐个元素地进行.这就是 NumPy 发挥作用的地方. 示例 #1: # 演示需要 NumPy 的

随机推荐