Java原子变量类原理及实例解析

这篇文章主要介绍了Java原子变量类原理及实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

一、原子变量类简介

为何需要原子变量类

保证线程安全是 Java 并发编程必须要解决的重要问题。Java 从原子性、可见性、有序性这三大特性入手,确保多线程的数据一致性。

确保线程安全最常见的做法是利用锁机制(Lock、sychronized)来对共享数据做互斥同步,这样在同一个时刻,只有一个线程可以执行某个方法或者某个代码块,那么操作必然是原子性的,线程安全的。互斥同步最主要的问题是线程阻塞和唤醒所带来的性能问题。

volatile 是轻量级的锁(自然比普通锁性能要好),它保证了共享变量在多线程中的可见性,但无法保证原子性。所以,它只能在一些特定场景下使用。

为了兼顾原子性以及锁带来的性能问题,Java 引入了 CAS (主要体现在 Unsafe 类)来实现非阻塞同步(也叫乐观锁)。并基于 CAS ,提供了一套原子工具类。

原子变量类的作用

原子变量类 比锁的粒度更细,更轻量级,并且对于在多处理器系统上实现高性能的并发代码来说是非常关键的。原子变量将发生竞争的范围缩小到单个变量上。

原子变量类相当于一种泛化的 volatile 变量,能够支持原子的、有条件的读/改/写操作。

原子类在内部使用 CAS 指令(基于硬件的支持)来实现同步。这些指令通常比锁更快。

原子变量类可以分为 4 组:

  • 基本类型

    • AtomicBoolean - 布尔类型原子类
    • AtomicInteger - 整型原子类
    • AtomicLong - 长整型原子类
  • 引用类型
    • AtomicReference - 引用类型原子类
    • AtomicMarkableReference - 带有标记位的引用类型原子类
    • AtomicStampedReference - 带有版本号的引用类型原子类
  • 数组类型
    • AtomicIntegerArray - 整形数组原子类
    • AtomicLongArray - 长整型数组原子类
    • AtomicReferenceArray - 引用类型数组原子类
  • 属性更新器类型
    • AtomicIntegerFieldUpdater - 整型字段的原子更新器。
    • AtomicLongFieldUpdater - 长整型字段的原子更新器。
    • AtomicReferenceFieldUpdater - 原子更新引用类型里的字段。

这里不对 CAS、volatile、互斥同步做深入探讨。如果想了解更多细节,不妨参考:Java 并发核心机制

二、基本类型

这一类型的原子类是针对 Java 基本类型进行操作。

  • AtomicBoolean - 布尔类型原子类
  • AtomicInteger - 整型原子类
  • AtomicLong - 长整型原子类

以上类都支持 CAS,此外,AtomicInteger、AtomicLong 还支持算术运算。

提示:

虽然 Java 只提供了 AtomicBoolean 、AtomicInteger、AtomicLong,但是可以模拟其他基本类型的原子变量。要想模拟其他基本类型的原子变量,可以将 short 或 byte 等类型与 int 类型进行转换,以及使用 Float.floatToIntBits 、Double.doubleToLongBits 来转换浮点数。

由于 AtomicBoolean、AtomicInteger、AtomicLong 实现方式、使用方式都相近,所以本文仅针对 AtomicInteger 进行介绍。

AtomicInteger 用法

public final int get() // 获取当前值
public final int getAndSet(int newValue) // 获取当前值,并设置新值
public final int getAndIncrement()// 获取当前值,并自增
public final int getAndDecrement() // 获取当前值,并自减
public final int getAndAdd(int delta) // 获取当前值,并加上预期值
boolean compareAndSet(int expect, int update) // 如果输入值(update)等于预期值,将该值设置为输入值
public final void lazySet(int newValue) // 最终设置为 newValue,使用 lazySet 设置之后可能导致其他线程在之后的一小段时间内还是可以读到旧的值。

AtomicInteger 使用示例:

public class AtomicIntegerDemo {

  public static void main(String[] args) throws InterruptedException {
    ExecutorService executorService = Executors.newFixedThreadPool(5);
    AtomicInteger count = new AtomicInteger(0);
    for (int i = 0; i < 1000; i++) {
      executorService.submit((Runnable) () -> {
        System.out.println(Thread.currentThread().getName() + " count=" + count.get());
        count.incrementAndGet();
      });
    }

    executorService.shutdown();
    executorService.awaitTermination(30, TimeUnit.SECONDS);
    System.out.println("Final Count is : " + count.get());
  }
}

AtomicInteger 实现

阅读 AtomicInteger 源码,可以看到如下定义:

private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long valueOffset;

static {
  try {
    valueOffset = unsafe.objectFieldOffset
      (AtomicInteger.class.getDeclaredField("value"));
  } catch (Exception ex) { throw new Error(ex); }
}

private volatile int value;

说明:

  • value - value 属性使用 volatile 修饰,使得对 value 的修改在并发环境下对所有线程可见。
  • valueOffset - value 属性的偏移量,通过这个偏移量可以快速定位到 value 字段,这个是实现 AtomicInteger 的关键。
  • unsafe - Unsafe 类型的属性,它为 AtomicInteger 提供了 CAS 操作。

三、引用类型

Java 数据类型分为 基本数据类型 和 引用数据类型 两大类(不了解 Java 数据类型划分可以参考: Java 基本数据类型 )。

上一节中提到了针对基本数据类型的原子类,那么如果想针对引用类型做原子操作怎么办?Java 也提供了相关的原子类:

  • AtomicReference - 引用类型原子类
  • AtomicMarkableReference - 带有标记位的引用类型原子类
  • AtomicStampedReference - 带有版本号的引用类型原子类

AtomicStampedReference 类在引用类型原子类中,彻底地解决了 ABA 问题,其它的 CAS 能力与另外两个类相近,所以最具代表性。因此,本节只针对 AtomicStampedReference 进行说明。

示例:基于 AtomicReference 实现一个简单的自旋锁

public class AtomicReferenceDemo2 {

  private static int ticket = 10;

  public static void main(String[] args) {
    threadSafeDemo();
  }

  private static void threadSafeDemo() {
    SpinLock lock = new SpinLock();
    ExecutorService executorService = Executors.newFixedThreadPool(3);
    for (int i = 0; i < 5; i++) {
      executorService.execute(new MyThread(lock));
    }
    executorService.shutdown();
  }

  /**
   * 基于 {@link AtomicReference} 实现的简单自旋锁
   */
  static class SpinLock {

    private AtomicReference<Thread> atomicReference = new AtomicReference<>();

    public void lock() {
      Thread current = Thread.currentThread();
      while (!atomicReference.compareAndSet(null, current)) {}
    }

    public void unlock() {
      Thread current = Thread.currentThread();
      atomicReference.compareAndSet(current, null);
    }

  }

  /**
   * 利用自旋锁 {@link SpinLock} 并发处理数据
   */
  static class MyThread implements Runnable {

    private SpinLock lock;

    public MyThread(SpinLock lock) {
      this.lock = lock;
    }

    @Override
    public void run() {
      while (ticket > 0) {
        lock.lock();
        if (ticket > 0) {
          System.out.println(Thread.currentThread().getName() + " 卖出了第 " + ticket + " 张票");
          ticket--;
        }
        lock.unlock();
      }
    }
  }
}

原子类的实现基于 CAS 机制,而 CAS 存在 ABA 问题(不了解 ABA 问题,可以参考:Java 并发基础机制 - CAS 的问题)。正是为了解决 ABA 问题,才有了 AtomicMarkableReference 和 AtomicStampedReference。

AtomicMarkableReference 使用一个布尔值作为标记,修改时在 true / false 之间切换。这种策略不能根本上解决 ABA 问题,但是可以降低 ABA 发生的几率。常用于缓存或者状态描述这样的场景。

public class AtomicMarkableReferenceDemo {

  private final static String INIT_TEXT = "abc";

  public static void main(String[] args) throws InterruptedException {

    final AtomicMarkableReference<String> amr = new AtomicMarkableReference<>(INIT_TEXT, false);

    ExecutorService executorService = Executors.newFixedThreadPool(3);
    for (int i = 0; i < 10; i++) {
      executorService.submit(new Runnable() {
        @Override
        public void run() {
          try {
            Thread.sleep(Math.abs((int) (Math.random() * 100)));
          } catch (InterruptedException e) {
            e.printStackTrace();
          }

          String name = Thread.currentThread().getName();
          if (amr.compareAndSet(INIT_TEXT, name, amr.isMarked(), !amr.isMarked())) {
            System.out.println(Thread.currentThread().getName() + " 修改了对象!");
            System.out.println("新的对象为:" + amr.getReference());
          }
        }
      });
    }

    executorService.shutdown();
    executorService.awaitTermination(3, TimeUnit.SECONDS);
  }

}

AtomicStampedReference 使用一个整型值做为版本号,每次更新前先比较版本号,如果一致,才进行修改。通过这种策略,可以根本上解决 ABA 问题。

public class AtomicStampedReferenceDemo {

  private final static String INIT_REF = "pool-1-thread-3";

  private final static AtomicStampedReference<String> asr = new AtomicStampedReference<>(INIT_REF, 0);

  public static void main(String[] args) throws InterruptedException {

    System.out.println("初始对象为:" + asr.getReference());

    ExecutorService executorService = Executors.newFixedThreadPool(3);
    for (int i = 0; i < 3; i++) {
      executorService.execute(new MyThread());
    }

    executorService.shutdown();
    executorService.awaitTermination(3, TimeUnit.SECONDS);
  }

  static class MyThread implements Runnable {

    @Override
    public void run() {
      try {
        Thread.sleep(Math.abs((int) (Math.random() * 100)));
      } catch (InterruptedException e) {
        e.printStackTrace();
      }

      final int stamp = asr.getStamp();
      if (asr.compareAndSet(INIT_REF, Thread.currentThread().getName(), stamp, stamp + 1)) {
        System.out.println(Thread.currentThread().getName() + " 修改了对象!");
        System.out.println("新的对象为:" + asr.getReference());
      }
    }

  }

}

四、数组类型

Java 提供了以下针对数组的原子类:

  • AtomicIntegerArray - 整形数组原子类
  • AtomicLongArray - 长整型数组原子类
  • AtomicReferenceArray - 引用类型数组原子类

已经有了针对基本类型和引用类型的原子类,为什么还要提供针对数组的原子类呢?

数组类型的原子类为 数组元素 提供了 volatile 类型的访问语义,这是普通数组所不具备的特性——volatile 类型的数组仅在数组引用上具有 volatile 语义。

示例:AtomicIntegerArray 使用示例(AtomicLongArray 、AtomicReferenceArray 使用方式也类似)

public class AtomicIntegerArrayDemo {

  private static AtomicIntegerArray atomicIntegerArray = new AtomicIntegerArray(10);

  public static void main(final String[] arguments) throws InterruptedException {

    System.out.println("Init Values: ");
    for (int i = 0; i < atomicIntegerArray.length(); i++) {
      atomicIntegerArray.set(i, i);
      System.out.print(atomicIntegerArray.get(i) + " ");
    }
    System.out.println();

    Thread t1 = new Thread(new Increment());
    Thread t2 = new Thread(new Compare());
    t1.start();
    t2.start();

    t1.join();
    t2.join();

    System.out.println("Final Values: ");
    for (int i = 0; i < atomicIntegerArray.length(); i++) {
      System.out.print(atomicIntegerArray.get(i) + " ");
    }
    System.out.println();
  }

  static class Increment implements Runnable {

    @Override
    public void run() {

      for (int i = 0; i < atomicIntegerArray.length(); i++) {
        int value = atomicIntegerArray.incrementAndGet(i);
        System.out.println(Thread.currentThread().getName() + ", index = " + i + ", value = " + value);
      }
    }

  }

  static class Compare implements Runnable {

    @Override
    public void run() {
      for (int i = 0; i < atomicIntegerArray.length(); i++) {
        boolean swapped = atomicIntegerArray.compareAndSet(i, 2, 3);
        if (swapped) {
          System.out.println(Thread.currentThread().getName() + " swapped, index = " + i + ", value = 3");
        }
      }
    }

  }
}

五、属性更新器类型

更新器类支持基于反射机制的更新字段值的原子操作。

  • AtomicIntegerFieldUpdater - 整型字段的原子更新器。
  • AtomicLongFieldUpdater - 长整型字段的原子更新器。
  • AtomicReferenceFieldUpdater - 原子更新引用类型里的字段。

这些类的使用有一定限制:

因为对象的属性修改类型原子类都是抽象类,所以每次使用都必须使用静态方法 newUpdater() 创建一个更新器,并且需要设置想要更新的类和属性。

  • 字段必须是 volatile 类型的;
  • 不能作用于静态变量(static);
  • 不能作用于常量(final);
public class AtomicReferenceFieldUpdaterDemo {

 static User user = new User("begin");

 static AtomicReferenceFieldUpdater<User, String> updater =
  AtomicReferenceFieldUpdater.newUpdater(User.class, String.class, "name");

 public static void main(String[] args) {
  ExecutorService executorService = Executors.newFixedThreadPool(3);
  for (int i = 0; i < 5; i++) {
   executorService.execute(new MyThread());
  }
  executorService.shutdown();
 }

 static class MyThread implements Runnable {

  @Override
  public void run() {
   if (updater.compareAndSet(user, "begin", "end")) {
    try {
     TimeUnit.SECONDS.sleep(1);
    } catch (InterruptedException e) {
     e.printStackTrace();
    }
    System.out.println(Thread.currentThread().getName() + " 已修改 name = " + user.getName());
   } else {
    System.out.println(Thread.currentThread().getName() + " 已被其他线程修改");
   }
  }

 }

 static class User {

  volatile String name;

  public User(String name) {
   this.name = name;
  }

  public String getName() {
   return name;
  }

  public User setName(String name) {
   this.name = name;
   return this;
  }

 }

}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Java concurrency之AtomicLongArray原子类_动力节点Java学院整理

    AtomicLongArray介绍和函数列表  AtomicLongArray函数列表 // 创建给定长度的新 AtomicLongArray. AtomicLongArray(int length) // 创建与给定数组具有相同长度的新 AtomicLongArray,并从给定数组复制其所有元素. AtomicLongArray(long[] array) // 以原子方式将给定值添加到索引 i 的元素. long addAndGet(int i, long delta) // 如果当前值 =

  • Java concurrency之AtomicLongFieldUpdater原子类_动力节点Java学院整理

    AtomicLongFieldUpdater介绍和函数列表 AtomicLongFieldUpdater可以对指定"类的 'volatile long'类型的成员"进行原子更新.它是基于反射原理实现的. AtomicLongFieldUpdater函数列表 // 受保护的无操作构造方法,供子类使用. protected AtomicLongFieldUpdater() // 以原子方式将给定值添加到此更新器管理的给定对象的字段的当前值. long addAndGet(T obj, lo

  • Java concurrency之AtomicReference原子类_动力节点Java学院整理

    AtomicReference介绍和函数列表 AtomicReference是作用是对"对象"进行原子操作. AtomicReference函数列表 // 使用 null 初始值创建新的 AtomicReference. AtomicReference() // 使用给定的初始值创建新的 AtomicReference. AtomicReference(V initialValue) // 如果当前值 == 预期值,则以原子方式将该值设置为给定的更新值. boolean compare

  • java并发之原子操作类和非阻塞算法

    背景 近年来,在并发算法领域的大多数研究都侧重于非阻塞算法,这种算法用底层的原子机器指令(例如比较并发交换指令)代替锁来确保数据在并发访问中的一致性.非阻塞算法被广泛的用于在操作系统和JVM中实现线程/进程调度机制.垃圾回收机制以及锁和其他并发数据结构. 与基于锁的方案相比,非阻塞算法在设计和实现上都要复杂的多,但他们在可伸缩性和活跃性上却拥有巨大的优势,由于非阻塞算法可以使多个线程在竞争相同数据时不会发生阻塞,因此它能在粒度更细的层次上面进行协调,并且极大的减少调度开销.锁虽然Java语言锁定

  • java 并发中的原子性与可视性实例详解

    java 并发中的原子性与可视性实例详解 并发其实是一种解耦合的策略,它帮助我们把做什么(目标)和什么时候做(时机)分开.这样做可以明显改进应用程序的吞吐量(获得更多的CPU调度时间)和结构(程序有多个部分在协同工作).做过java Web开发的人都知道,Java Web中的Servlet程序在Servlet容器的支持下采用单实例多线程的工作模式,Servlet容器为你处理了并发问题. 原子性 原子是世界上的最小单位,具有不可分割性.比如 a=0:(a非long和double类型) 这个操作是不

  • Java并发编程之原子变量与非阻塞同步机制

    1.非阻塞算法 非阻塞算法属于并发算法,它们可以安全地派生它们的线程,不通过锁定派生,而是通过低级的原子性的硬件原生形式 -- 例如比较和交换.非阻塞算法的设计与实现极为困难,但是它们能够提供更好的吞吐率,对生存问题(例如死锁和优先级反转)也能提供更好的防御.使用底层的原子化机器指令取代锁,比如比较并交换(CAS,compare-and-swap). 2.悲观技术 独占锁是一种悲观的技术.它假设最坏的情况发生(如果不加锁,其它线程会破坏对象状态),即使没有发生最坏的情况,仍然用锁保护对象状态.

  • Java多线程Atomic包操作原子变量与原子类详解

    在阅读这篇文章之前,大家可以先看下<Java多线程atomic包介绍及使用方法>,了解atomic包的相关内容. 一.何谓Atomic? Atomic一词跟原子有点关系,后者曾被人认为是最小物质的单位.计算机中的Atomic是指不能分割成若干部分的意思.如果一段代码被认为是Atomic,则表示这段代码在执行过程中,是不能被中断的.通常来说,原子指令由硬件提供,供软件来实现原子方法(某个线程进入该方法后,就不会被中断,直到其执行完成) 在x86平台上,CPU提供了在指令执行期间对总线加锁的手段.

  • Java concurrency之AtomicLong原子类_动力节点Java学院整理

    AtomicLong介绍和函数列表 AtomicLong是作用是对长整形进行原子操作. 在32位操作系统中,64位的long 和 double 变量由于会被JVM当作两个分离的32位来进行操作,所以不具有原子性.而使用AtomicLong能让long的操作保持原子型. AtomicLong函数列表 // 构造函数 AtomicLong() // 创建值为initialValue的AtomicLong对象 AtomicLong(long initialValue) // 以原子方式设置当前值为ne

  • Java原子变量类原理及实例解析

    这篇文章主要介绍了Java原子变量类原理及实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一.原子变量类简介 为何需要原子变量类 保证线程安全是 Java 并发编程必须要解决的重要问题.Java 从原子性.可见性.有序性这三大特性入手,确保多线程的数据一致性. 确保线程安全最常见的做法是利用锁机制(Lock.sychronized)来对共享数据做互斥同步,这样在同一个时刻,只有一个线程可以执行某个方法或者某个代码块,那么操作必然是原子性

  • Java内存模型原子性原理及实例解析

    这篇文章主要介绍了Java内存模型原子性原理及实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 本文就具体来讲讲JMM是如何保证共享变量访问的原子性的. 原子性问题 原子性是指:一个或多个操作,要么全部执行且在执行过程中不被任何因素打断,要么全部不执行. 下面就是一段会出现原子性问题的代码: public class AtomicProblem { private static Logger logger = LoggerFactory.

  • java阻塞队列实现原理及实例解析

    这篇文章主要介绍了java阻塞队列实现原理及实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 阻塞队列与普通队列的不同在于.当队列是空的时候,从队列中获取元素的操作将会被阻塞,或者当队列满时,往队列里面添加元素将会被阻塞.试图从空的阻塞队列中获取元素的线程将会被阻塞,直到其他的线程往空的队列插入新的元素.同样,试图往已满的阻塞队列中添加新元素的线程同样也会被阻塞,直到其他的线程使队列重新变得空闲起来,如从队列中移除一个或者多个元素,或者完

  • Java Lock接口实现原理及实例解析

    1.概述 JUC中locks包下常用的类与接口图如下: 图中,Lock和ReadWriteLock是顶层锁的接口,Lock代表实现类是ReentrantLock(可重入锁),ReadWriteLock(读写锁)的代表实现类是ReentrantReadWriteLock. ReadWriteLock 接口以类似方式定义了读锁而写锁.此包只提供了一个实现,即 ReentrantReadWriteLock. Condition 接口描述了可能会与锁有关联的条件变量.这些变量在用法上与使用 Object

  • Java原子变量类常见问题解决

    在学习多线程时,遇到了原子变量类,它是基于 CAS 和 volatile 实现的,能够保障对共享变量进行 read-modify-write 更新操作的原子性和可见性.于是我就写了一段代码试试,自认为非常正确. public class Test{ private static AtomicInteger ID = new AtomicInteger(0); public static int nextID(){ //返回的ID范围为 1~100 if(ID.get() == 100) { //

  • Java CAS基本实现原理代码实例解析

    一.前言 了解CAS,首先要清楚JUC,那么什么是JUC呢?JUC就是java.util.concurrent包的简称.它有核心就是CAS与AQS.CAS是java.util.concurrent.atomic包的基础,如AtomicInteger.AtomicBoolean.AtomicLong等等类都是基于CAS. 什么是CAS呢?全称Compare And Swap,比较并交换.CAS有三个操作数,内存值V,旧的预期值E,要修改的新值N.当且仅当预期值E和内存值V相同时,将内存值V修改为N

  • JAVA面向对象 封装原理及实例解析

    这篇文章主要介绍了JAVA面向对象 封装原理及实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 抽象 去定义一个类的时候,实际上就是把一类事物的共有的属性和行为提取出来,形成一个物理模型(模板).这种研究问题的方法称为抽象. 修饰符 Java提供四种访问控制修饰符号控制方法和变量的访问权限: Ⅰ.公开级别:用pubilc修饰,对外公开 Ⅱ.受保护级别:用protected修饰,对子类和同一个包中的类公开 Ⅲ.默认级别:没有修饰符号,向同一

  • java多线程加锁以及Condition类的使用实例解析

    这篇文章主要介绍了java多线程加锁以及Condition类的使用实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 看了网上非常多的运行代码,很多都是重复的再说一件事,可能对于java老鸟来说,理解java的多线程是非常容易的事情,但是对于我这样的菜鸟来说,这个实在有点难,可能是我太菜了,网上重复的陈述对于我理解这个问题一点帮助都没有.所以这里我写下我对于这个问题的理解,目的是为了防止我忘记. 还是从代码实例开始讲起: 代码 import

  • Java HashMap原理及实例解析

    这篇文章主要介绍了Java HashMap原理及实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 示例 1 : HashMap的键值对 HashMap储存数据的方式是-- 键值对 package collection; import java.util.HashMap; public class TestCollection { public static void main(String[] args) { HashMap<String

  • Java反射技术详解及实例解析

    前言 相信很多人都知道反射可以说是Java中最强大的技术了,它可以做的事情太多太多,很多优秀的开源框架都是通过反射完成的,比如最初的很多注解框架,后来因为java反射影响性能,所以被运行时注解APT替代了,java反射有个开源框架jOOR相信很多人都用过,不过我们还是要学习反射的基础语法,这样才能自己写出优秀的框架,当然这里所讲的反射技术,是学习Android插件化技术.Hook技术等必不可少的! 一.基本反射技术   1.1 根据一个字符串得到一个类 getClass方法 String nam

随机推荐