关于Python 内置库 itertools

目录
  • 1、itertools库
  • 2、使用itertools
  • 3、itertools.accumulate
  • 4、itertools.chain
  • 5、itertools.combinations_with_replacement
  • 6、itertools.compress
  • 7、itertools.count
  • 8、itertools.cycle
  • 9、itertools.dropwhile
  • 10、itertools.filterfalse
  • 11、itertools.groupby
  • 12、itertools.islice
  • 13、itertools.permutations
  • 14、itertools.product
  • 15、itertools.repeat
  • 16、itertools.starmap
  • 17、itertools.takewhile
  • 18、itertools.tee
  • 19、itertools.zip_longest

前言:

最近事情不是很多,想写一些技术文章分享给大家,同时也对自己一段时间来碎片化接受的知识进行一下梳理,所谓写清楚才能说清楚,说清楚才能想清楚,就是这个道理了。

很多人都致力于把Python代码写得更Pythonic,一来更符合规范且容易阅读,二来一般Pythonic的代码在执行上也更有效率。今天就先给大家介绍一下Python的系统库itertools

1、itertools库

迭代器(生成器)在Python中是一种很常用也很好用的数据结构,比起列表(list)来说,迭代器最大的优势就是延迟计算,按需使用,从而提高开发体验和运行效率,以至于在Python 3中map,filter等操作返回的不再是列表而是迭代器。

话虽这么说但大家平时用到的迭代器大概只有range了,而通过iter函数把列表对象转化为迭代器对象又有点多此一举,这时候我们今天的主角itertools就该上场了。

2、使用itertools

itertools中的函数大多是返回各种迭代器对象,其中很多函数的作用我们平时要写很多代码才能达到,而在运行效率上反而更低,毕竟人家是系统库。

3、itertools.accumulate

简单来说就是累加。

>>> import itertools
>>> x = itertools.accumulate(range(10))
>>> print(list(x))
[0, 1, 3, 6, 10, 15, 21, 28, 36, 45]

4、itertools.chain

连接多个列表或者迭代器。

>>> x = itertools.chain(range(3), range(4), [3,2,1])
>>> print(list(x))
[0, 1, 2, 0, 1, 2, 3, 3, 2, 1]
itertools.combinations

求列表或生成器中指定数目的元素不重复的所有组合

>>> x = itertools.combinations(range(4), 3)
>>> print(list(x))
[(0, 1, 2), (0, 1, 3), (0, 2, 3), (1, 2, 3)]

5、itertools.combinations_with_replacement

允许重复元素的组合

>>> x = itertools.combinations_with_replacement('ABC', 2)
>>> print(list(x))
[('A', 'A'), ('A', 'B'), ('A', 'C'), ('B', 'B'), ('B', 'C'), ('C', 'C')]

6、itertools.compress

按照真值表筛选元素

>>> x = itertools.compress(range(5), (True, False, True, True, False))
>>> print(list(x))
[0, 2, 3]

7、itertools.count

就是一个计数器,可以指定起始位置和步长

>>> x = itertools.count(start=20, step=-1)
>>> print(list(itertools.islice(x, 0, 10, 1)))
[20, 19, 18, 17, 16, 15, 14, 13, 12, 11]

8、itertools.cycle

循环指定的列表和迭代器

>>> x = itertools.cycle('ABC')
>>> print(list(itertools.islice(x, 0, 10, 1)))
['A', 'B', 'C', 'A', 'B', 'C', 'A', 'B', 'C', 'A']

9、itertools.dropwhile

按照真值函数丢弃掉列表和迭代器前面的元素

>>> x = itertools.dropwhile(lambda e: e < 5, range(10))
>>> print(list(x))
[5, 6, 7, 8, 9]

10、itertools.filterfalse

保留对应真值为False的元素

>>> x = itertools.filterfalse(lambda e: e < 5, (1, 5, 3, 6, 9, 4))
>>> print(list(x))
[5, 6, 9]

11、itertools.groupby

按照分组函数的值对元素进行分组

>>> x = itertools.groupby(range(10), lambda x: x < 5 or x > 8)
>>> for condition, numbers in x:
...     print(condition, list(numbers))
True [0, 1, 2, 3, 4]
False [5, 6, 7, 8]
True [9]

12、itertools.islice

上文使用过的函数,对迭代器进行切片

>>> x = itertools.islice(range(10), 0, 9, 2)
>>> print(list(x))
[0, 2, 4, 6, 8]

13、itertools.permutations

产生指定数目的元素的所有排列(顺序有关)

>>> x = itertools.permutations(range(4), 3)
>>> print(list(x))
[(0, 1, 2), (0, 1, 3), (0, 2, 1), (0, 2, 3), (0, 3, 1), (0, 3, 2), (1, 0, 2), (1, 0, 3), (1, 2, 0), (1, 2, 3), (1, 3, 0), (1, 3, 2), (2, 0, 1), (2, 0,3), (2, 1, 0), (2, 1, 3), (2, 3, 0), (2, 3, 1), (3, 0, 1), (3, 0, 2), (3, 1, 0), (3, 1, 2), (3, 2, 0), (3, 2, 1)]

14、itertools.product

产生多个列表和迭代器的(积)

>>> x = itertools.product('ABC', range(3))
>>>
>>> print(list(x))
[('A', 0), ('A', 1), ('A', 2), ('B', 0), ('B', 1), ('B', 2), ('C', 0), ('C', 1), ('C', 2)]

15、itertools.repeat

简单的生成一个拥有指定数目元素的迭代器

>>> x = itertools.repeat(0, 5)
>>> print(list(x))
[0, 0, 0, 0, 0]

16、itertools.starmap

类似map

>>> x = itertools.starmap(str.islower, 'aBCDefGhI')
>>> print(list(x))
[True, False, False, False, True, True, False, True, False]

17、itertools.takewhile

dropwhile相反,保留元素直至真值函数值为假。

>>> x = itertools.takewhile(lambda e: e < 5, range(10))
>>> print(list(x))
[0, 1, 2, 3, 4]

18、itertools.tee

这个函数我也不是很懂,似乎是生成指定数目的迭代器

>>> x = itertools.tee(range(10), 2)
>>> for letters in x:
...     print(list(letters))
...
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

19、itertools.zip_longest

类似于zip,不过已较长的列表和迭代器的长度为准

>>> x = itertools.zip_longest(range(3), range(5))
>>> y = zip(range(3), range(5))
>>> print(list(x))
[(0, 0), (1, 1), (2, 2), (None, 3), (None, 4)]
>>> print(list(y))
[(0, 0), (1, 1), (2, 2)]

结语:

到此这篇关于关于Python 内置库 itertools的文章就介绍到这了,更多相关Python内置库itertools内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python中itertools的用法详解

    iterator 循环器(iterator)是对象的容器,包含有多个对象.通过调用循环器的next()方法 (next()方法,在Python 3.x中),循环器将依次返回一个对象.直到所有的对象遍历穷尽,循环器将举出StopIteration错误. 在for i in iterator结构中,循环器每次返回的对象将赋予给i,直到循环结束.使用iter()内置函数,我们可以将诸如表.字典等容器变为循环器.比如 for i in iter([2, 4, 5, 6]): print i 标准库中的i

  • 详解python itertools功能

    介绍 itertools是python内置的模块,使用简单且功能强大,这里尝试汇总整理下,并提供简单应用示例:如果还不能满足你的要求,欢迎加入补充. 使用只需简单一句导入:import itertools chain() 与其名称意义一样,给它一个列表如 lists/tuples/iterables,链接在一起:返回iterables对象. letters = ['a', 'b', 'c', 'd', 'e', 'f'] booleans = [1, 0, 1, 0, 0, 1] print(l

  • python中的itertools的使用详解

    今天了解了下python中内置模块itertools的使用,熟悉下,看能不能以后少写几个for,嘿嘿

  • Python编程itertools模块处理可迭代集合相关函数

    容器与可迭代对象 在正式开始前先补充一些基本概念在 Python 中存在容器 与 可迭代对象 容器:用来存储多个元素的数据结构,例如 列表,元组,字典,集合等内容: 可迭代对象:实现了 __iter__ 方法的对象就叫做可迭代对象. 从可迭代对象中还衍生出 迭代器 与 生成器: 迭代器:既实现了 __iter__,也实现了 __next__ 方法的对象叫做迭代器: 生成器:具有 yield 关键字的函数都是生成器. 这样就比较清楚了,可迭代对象的范围要大于容器.而且可迭代对象只能使用一次,使用完

  • Python itertools.product方法代码实例

    itertools.product:类似于求多个可迭代对象的笛卡尔积. 使用的形式是: itertools.product(*iterables, repeat=1), product(X, repeat=3)等价于product(X, X, X). 1. 直接使用时:分别生成元组,然后合成一个list import itertools aa = itertools.product(['西藏','瀑布','湖水'], ['月色','星空']) bb = list(aa) #按照顺序生成笛卡尔积,

  • Python函数式编程中itertools模块详解

    目录 容器与可迭代对象 count() 函数 cycle 函数 repeat 函数 enumerate 函数,添加序号 accumulate 函数 chain 与 groupby 函数 zip_longest 与 zip tee 函数 compress 函数 islice.dropwhile.takewhile.filterfalse.filter 总结 容器与可迭代对象 在正式开始前先补充一些基本概念在 Python 中存在容器 与 可迭代对象 容器:用来存储多个元素的数据结构,例如 列表,元

  • python利用itertools生成密码字典并多线程撞库破解rar密码

    脚本功能: 利用itertools生成密码字典(迭代器形式) 多线程并发从密码字典中取出密码进行验证 验证成功后把密码写入文件中保存 #!/usr/bin/env python # -*- coding: UTF-8 -*- # Author:Leslie-x import itertools as its import threading import rarfile import os words = '0123456789abcdefghijklmnopqrstuvwxyz' # 涉及到生

  • 详解Python中的分组函数groupby和itertools)

    具体代码如下所示: from operator import itemgetter #itemgetter用来去dict中的key,省去了使用lambda函数 from itertools import groupby #itertool还包含有其他很多函数,比如将多个list联合起来.. d1={'name':'zhangsan','age':20,'country':'China'} d2={'name':'wangwu','age':19,'country':'USA'} d3={'nam

  • 关于Python 内置库 itertools

    目录 1.itertools库 2.使用itertools 3.itertools.accumulate 4.itertools.chain 5.itertools.combinations_with_replacement 6.itertools.compress 7.itertools.count 8.itertools.cycle 9.itertools.dropwhile 10.itertools.filterfalse 11.itertools.groupby 12.itertools

  • python 内置库wsgiref的使用(WSGI基础入门)

    WSGI基本原理 1. WSGI处理过程 浏览器到WSGI Server:浏览器发送的请求会先到WSGI Server. environ:WSGI Server会将HTTP请求中的参数等信息封装到environ(一个字典)中. WSGI Server到WSGI App:App就是我们自己编写的后台程序,每个URL会映射到对应的入口处理函数(或其他可调用对象),WSGI Server调用后台App时,会将environ和WSGI Server中自己的一个start_response函数注入到后台A

  • 利用Python内置库实现创建命令行应用程序

    目录 介绍 解析参数 创建帮助信息 添加别名 使用相互排斥的参数 创建一个简单的搜索工具 总结 介绍 当创建一个应用程序时,通常希望能够告诉你的应用程序如何做某事.有两种流行的方法来完成这项任务,你可以让应用程序接受命令行参数,或者创建一个图形化的用户接口.有些应用程序两者都支持. 当你需要在服务器上运行你的代码时,命令行接口很有帮助.大多数服务器没有图形化界面,特别当它们是Linux服务器时.在这种情况下,即使你想运行图形用户界面,你也可能无法运行. Python 有一个叫做 argparse

  • 详解python算法常用技巧与内置库

    近些年随着python的越来越火,python也渐渐成为了很多程序员的喜爱.许多程序员已经开始使用python作为第一语言来刷题. 最近我在用python刷题的时候想去找点python的刷题常用库api和刷题技巧来看看.类似于C++的STL库文档一样,但是很可惜并没有找到,于是决定结合自己的刷题经验和上网搜索做一份文档出来,供自己和大家观看查阅. 1.输入输出: 1.1 第一行给定两个值n,m,用空格分割,第一个n决定接下来有n行的输入,m决定每一行有多少个数字,m个数字均用空格分隔. 解决办法

  • Python如何使用内置库matplotlib绘制折线图

    这篇文章主要介绍了Python如何使用内置库matplotlib绘制折线图,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 环境准备: 需要安装matplotlib,安装方式: pip install matplotlib 直接贴代码喽: #引入模块 from matplotlib import pyplot,font_manager #设置支持中文字体的显示 font=font_manager.FontProperties(fname="C:\

  • Python基于内置库pytesseract实现图片验证码识别功能

    这篇文章主要介绍了Python基于内置库pytesseract实现图片验证码识别功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 环境准备: 1.安装Tesseract模块 git文档地址:https://digi.bib.uni-mannheim.de/tesseract/ 下载后就是一个exe安装包,直接右击安装即可,安装完成之后,配置一下环境变量,编辑 系统变量里面 path,添加下面的安装路径: 2.如果您想使用其他语言,请下载相应的

  • Python enumerate内置库用法解析

    这篇文章主要介绍了Python enumerate内置库用法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 使用enumerate,可以自动进行索引下标的赋值,本例代码中使用enumerate,进行excel单元格的赋值操作. 代码如果重复被调用,可将该代码封装成类进行使用 import openpyxl #加载excel文件 wb = openpyxl.load_workbook('test_datas/test_cases.xlsx')

  • python使用prettytable内置库美化输出表格

    目录 前言: 安装 案例 从csv文件添加数据,并打印出表格 从HTML导入数据 前言: 大多数时候,需要输出的信息能够比较整齐的输出来,在使用mysql的时候,我们使用命令符之后,会输出特别好看的表格,python的prettytable库就是这么一个工具,可以帮助我们打印出好看的表格,并且对中文支持特别友好 安装 prettytable是pyhton内置库,通过命令直接可以安装 pip install prettytable 案例 from prettytable import Pretty

  • python中内置库os与sys模块的详细介绍

    目录 os包 sys模块 os包 想要使用os包一样要先导入:import os os包下可以直接调用的函数 下面介绍一下os包中可以直接调用的函数: 例子: 例子: 例子: 注意:os.path.exists()参数可以传绝对路径,也可以传相对路径: 已知一个文件的路径,可以用spilt切割出这个文件名: sys模块 sys模块常用于操作当前的操作系统/环境 sys中常用的函数: 例子: 关于argv我们知道,他可以从程序外部获取参数,我们让他从终端传入参数给程序. 举一个详细的例子介绍: 可

  • Python内置random模块生成随机数的方法

    本文我们详细地介绍下两个模块关于生成随机序列的其他使用方法. 随机数参与的应用场景大家一定不会陌生,比如密码加盐时会在原密码上关联一串随机数,蒙特卡洛算法会通过随机数采样等等.Python内置的random模块提供了生成随机数的方法,使用这些方法时需要导入random模块. import random 下面介绍下Python内置的random模块的几种生成随机数的方法. 1.random.random()随机生成 0 到 1 之间的浮点数[0.0, 1.0).注意的是返回的随机数可能会是 0 但

随机推荐