Python 数据结构之十大经典排序算法一文通关

目录
  • 1、冒泡排序
    • 算法演示
    • 算法步骤
    • 算法实现
  • 2、选择排序
    • 算法演示
    • 算法步骤
    • 算法实现
  • 3、简单插入排序
    • 算法演示
    • 算法步骤
    • 算法实现
  • 4、希尔排序
    • 算法演示
    • 算法步骤
    • 算法实现
  • 5、归并排序
    • 算法演示
    • 算法步骤
    • 算法实现
  • 6、快速排序
    • 算法演示
    • 算法步骤
    • 算法实现
  • 7、堆排序
    • 算法演示
    • 算法步骤
    • 算法实现
  • 8、计数排序
    • 算法演示
    • 算法步骤
    • 算法实现
  • 9、桶排序
    • 算法演示
    • 算法步骤
    • 算法实现
  • 10、基数排序
    • 算法演示
    • 算法步骤
    • 算法实现

一文搞掂十大经典排序算法

今天整理一下十大经典排序算法。

1、冒泡排序

——越小的元素会经由交换慢慢“浮”到数列的顶端

算法演示

算法步骤

  • 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
  • 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
  • 针对所有的元素重复以上的步骤,除了最后一个;
  • 重复步骤1~3,直到排序完成。

算法实现

def bubbleSort(arr):
    for i in range(1, len(arr)):
        for j in range(0, len(arr)-i):
            if arr[j] > arr[j+1]:
                arr[j], arr[j + 1] = arr[j + 1], arr[j]
    return arr

2、选择排序

—— 最小的出来排第一,第二小的出来排第二…

算法演示

算法步骤

  • 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置。
  • 再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
  • 重复第二步,直到所有元素均排序完毕。

算法实现

def selectionSort(arr):
    for i in range(len(arr) - 1):
        # 记录最小数的索引
        minIndex = i
        for j in range(i + 1, len(arr)):
            if arr[j] < arr[minIndex]:
                minIndex = j
        # i 不是最小数时,将 i 和最小数进行交换
        if i != minIndex:
            arr[i], arr[minIndex] = arr[minIndex], arr[i]
    return arr

3、简单插入排序

——通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

算法演示

算法步骤

  • 从第一个元素开始,该元素可以认为已经被排序;
  • 取出下一个元素,在已经排序的元素序列中从后向前扫描;
  • 如果该元素(已排序)大于新元素,将该元素移到下一位置;
  • 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
  • 将新元素插入到该位置后;重复步骤2~5。

算法实现

def insertionSort(arr):
    for i in range(len(arr)):
        preIndex = i-1
        current = arr[i]
        while preIndex >= 0 and arr[preIndex] > current:
            arr[preIndex+1] = arr[preIndex]
            preIndex-=1
        arr[preIndex+1] = current
    return arr

4、希尔排序

——希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。

算法演示

算法步骤

  • 选择一个增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;
  • 按增量序列个数 k,对序列进行 k 趟排序;
  • 每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

算法实现

def shellSort(arr):
    import math
    gap=1
    while(gap < len(arr)/3):
        gap = gap*3+1
    while gap > 0:
        for i in range(gap,len(arr)):
            temp = arr[i]
            j = i-gap
            while j >=0 and arr[j] > temp:
                arr[j+gap]=arr[j]
                j-=gap
            arr[j+gap] = temp
        gap = math.floor(gap/3)
    return arr

5、归并排序

——建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

算法演示

算法步骤

  • 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;
  • 设定两个指针,最初位置分别为两个已经排序序列的起始位置;
  • 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;
  • 重复步骤 3 直到某一指针达到序列尾;
  • 将另一序列剩下的所有元素直接复制到合并序列尾。

算法实现

def mergeSort(arr):
    import math
    if(len(arr)<2):
        return arr
    middle = math.floor(len(arr)/2)
    left, right = arr[0:middle], arr[middle:]
    return merge(mergeSort(left), mergeSort(right))

def merge(left,right):
    result = []
    while left and right:
        if left[0] <= right[0]:
            result.append(left.pop(0))
        else:
            result.append(right.pop(0));
    while left:
        result.append(left.pop(0))
    while right:
        result.append(right.pop(0));
    return result

6、快速排序

——快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。 快速排序又是一种分而治之思想在排序算法上的典型应用。本质上来看,快速排序应该算是在冒泡排序基础上的递归分治法。

算法演示

算法步骤

  • 从数列中挑出一个元素,称为 “基准”(pivot);
  • 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
  • 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;

算法实现

def quickSort(arr, left=None, right=None):
    left = 0 if not isinstance(left,(int, float)) else left
    right = len(arr)-1 if not isinstance(right,(int, float)) else right
    if left < right:
        partitionIndex = partition(arr, left, right)
        quickSort(arr, left, partitionIndex-1)
        quickSort(arr, partitionIndex+1, right)
    return arr

def partition(arr, left, right):
    pivot = left
    index = pivot+1
    i = index
    while  i <= right:
        if arr[i] < arr[pivot]:
            swap(arr, i, index)
            index+=1
        i+=1
    swap(arr,pivot,index-1)
    return index-1

def swap(arr, i, j):
    arr[i], arr[j] = arr[j], arr[i]

7、堆排序

——利用堆这种数据结构所设计的一种排序算法

算法演示

算法步骤

  • 创建一个堆 H[0……n-1];
  • 把堆首(最大值)和堆尾互换;
  • 把堆的尺寸缩小 1,并调用 shift_down(0),目的是把新的数组顶端数据调整到相应位置;
  • 重复步骤 2,直到堆的尺寸为 1。

算法实现

def buildMaxHeap(arr):
    import math
    for i in range(math.floor(len(arr)/2),-1,-1):
        heapify(arr,i)

def heapify(arr, i):
    left = 2*i+1
    right = 2*i+2
    largest = i
    if left < arrLen and arr[left] > arr[largest]:
        largest = left
    if right < arrLen and arr[right] > arr[largest]:
        largest = right

    if largest != i:
        swap(arr, i, largest)
        heapify(arr, largest)

def swap(arr, i, j):
    arr[i], arr[j] = arr[j], arr[i]

def heapSort(arr):
    global arrLen
    arrLen = len(arr)
    buildMaxHeap(arr)
    for i in range(len(arr)-1,0,-1):
        swap(arr,0,i)
        arrLen -=1
        heapify(arr, 0)
    return arr

8、计数排序

——作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

算法演示

算法步骤

  • 找出待排序的数组中最大和最小的元素
  • 统计数组中每个值为i的元素出现的次数,存入数组C的第i项
  • 对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加)
  • 反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1

算法实现

def countingSort(arr, maxValue):
    bucketLen = maxValue+1
    bucket = [0]*bucketLen
    sortedIndex =0
    arrLen = len(arr)
    for i in range(arrLen):
        if not bucket[arr[i]]:
            bucket[arr[i]]=0
        bucket[arr[i]]+=1
    for j in range(bucketLen):
        while bucket[j]>0:
            arr[sortedIndex] = j
            sortedIndex+=1
            bucket[j]-=1
    return arr

9、桶排序

——桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。

算法演示

算法步骤

  • 设置一个定量的数组当作空桶;
  • 遍历输入数据,并且把数据一个一个放到对应的桶里去;
  • 对每个不是空的桶进行排序;
  • 从不是空的桶里把排好序的数据拼接起来。

算法实现

function bucketSort(arr, bucketSize) {
    if (arr.length === 0) {
      return arr;
    }

    var i;
    var minValue = arr[0];
    var maxValue = arr[0];
    for (i = 1; i < arr.length; i++) {
      if (arr[i] < minValue) {
          minValue = arr[i];                // 输入数据的最小值
      } else if (arr[i] > maxValue) {
          maxValue = arr[i];                // 输入数据的最大值
      }
    }

    // 桶的初始化
    var DEFAULT_BUCKET_SIZE = 5;            // 设置桶的默认数量为5
    bucketSize = bucketSize || DEFAULT_BUCKET_SIZE;
    var bucketCount = Math.floor((maxValue - minValue) / bucketSize) + 1;
    var buckets = new Array(bucketCount);
    for (i = 0; i < buckets.length; i++) {
        buckets[i] = [];
    }

    // 利用映射函数将数据分配到各个桶中
    for (i = 0; i < arr.length; i++) {
        buckets[Math.floor((arr[i] - minValue) / bucketSize)].push(arr[i]);
    }

    arr.length = 0;
    for (i = 0; i < buckets.length; i++) {
        insertionSort(buckets[i]);                      // 对每个桶进行排序,这里使用了插入排序
        for (var j = 0; j < buckets[i].length; j++) {
            arr.push(buckets[i][j]);
        }
    }

    return arr;
}

10、基数排序

基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序。最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。

算法演示

算法步骤

  • 取得数组中的最大数,并取得位数;
  • arr为原始数组,从最低位开始取每个位组成radix数组;
  • 对radix进行计数排序(利用计数排序适用于小范围数的特点);

算法实现

var counter = [];
function radixSort(arr, maxDigit) {
    var mod = 10;
    var dev = 1;
    for (var i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) {
        for(var j = 0; j < arr.length; j++) {
            var bucket = parseInt((arr[j] % mod) / dev);
            if(counter[bucket]==null) {
                counter[bucket] = [];
            }
            counter[bucket].push(arr[j]);
        }
        var pos = 0;
        for(var j = 0; j < counter.length; j++) {
            var value = null;
            if(counter[j]!=null) {
                while ((value = counter[j].shift()) != null) {
                      arr[pos++] = value;
                }
          }
        }
    }
    return arr;
}

到此这篇关于Python 数据结构之十大经典排序算法一文通关的文章就介绍到这了,更多相关Python 排序算法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python编程冒泡排序法实现动图排序示例解析

    目录 先上个冒泡排序的效果图: 动态排序的原理 Python tkinter库Canvas操作 动态排序的完整代码 部分代码注释 先上个冒泡排序的效果图: 是不是,有那么一点点像了? 其实要做这个动图真不是很难,来看冒泡的代码: >>> def Bubble(List): L = len(List)-1 for i in range(L): for j in range(L-i): if List[j]>List[j+1]: List[j],List[j+1]=List[j+1],

  • 如何利用Python动态展示排序算法

    目录 前言 选择冒泡 插入排序 归并排序 希尔排序 总结 前言 经常看到这种算法可视化的图片,但往往做不到和画图的人心灵相通,所以想自己画一下,本文主要实现归并排序和希尔排序,如果想实现其他算法可参考这篇 C语言实现各种排序算法[选择,冒泡,插入,归并,希尔,快排,堆排序,计数] 选择冒泡 这两种排序方案简单到很难说是什么算法,其中选择排序通过遍历一次数组,选出其中最大(小)的值放在新数组的第一位,再从剩下的数里选出最大(小)的,放到第二位,依次类推:冒泡排序则是通过重复走访要排序的数组,比较相

  • python教程对函数中的参数进行排序

    内建的 sorted() 函数可接受一个用来传递可调用对象( callable ) 的参数 key,而该可调用对象会返回待排序对象中的某些值,sorted则利用这些值来比较对象. 例如,如果应用中有一系列的 User 对象实例,而我们想通过 user_id 属性来对他们排序,则可以提供一个可调用对象将 User 实例作为输入然后返回 user_id. class User: def __init__(self, user_id): self.user_id = user_id def __rep

  • Python 列表排序详解

    在Python中,对列表进行排序有两种方法. 一种是调用 sort() 方法,该方法没有返回值,对列表本身进行升序排序. cars = ['bmw', 'audi', 'toyota', 'subaru'] cars.sort() print(cars) 输出: ['audi', 'bmw', 'subaru', 'toyota'] 另一种方法是使用 sorted() 函数,该函数会返回升序排序的列表,同时不影响原本的列表. cars = ['bmw', 'audi', 'toyota', 's

  • python如何实现常用的五种排序算法详解

    一.冒泡排序 原理: 比较相邻的元素.如果第一个比第二个大就交换他们两个 每一对相邻元素做同样的工作,直到结尾最后一对 每个元素都重复以上步骤,除了最后一个 第一步: 将乱序中的最大值找出,逐一移到序列最后的位置 alist = [3, 5, 9, 2, 1, 7, 8, 6, 4] def bubble_sort(alist): # 找最大值的方式是通过对列表中的元素进行两两比较,值大的元素逐步向后移动 # 序列中有n个元素,两两比较的话,需要比较n-1次 for i in range(len

  • Python实现堆排序案例详解

    Python实现堆排序 一.堆排序简介 堆排序(Heap Sort)是利用堆这种数据结构所设计的一种排序算法. 堆的结构是一棵完全二叉树的结构,并且满足堆积的性质:每个节点(叶节点除外)的值都大于等于(或都小于等于)它的子节点. 关于二叉树和完全二叉树的介绍可以参考:https://blog.csdn.net/weixin_43790276/article/details/104737870 堆排序先按从上到下.从左到右的顺序将待排序列表中的元素构造成一棵完全二叉树,然后对完全二叉树进行调整,使

  • python数据结构的排序算法

    目录 十大经典的排序算法 一.交换排序 1.冒泡排序(前后比较-交换) 2.快速排序(选取一个基准值,小数在左大数在右) 二.插入排序 1.简单插入排序(逐个插入到前面的有序数中) 2.希尔排序(从大范围到小范围进行比较-交换) 三.选择排序 1.简单选择排序(选择最小的数据放在前面) 2.堆排序(利用最大堆和最小堆的特性) 四.归并排序 五.其他排序 1.计数排序(字典计数-还原) 2.桶排序(链表) 3.基数排序 十大经典的排序算法 数据结构中的十大经典算法:冒泡排序.快速排序.简单插入排序

  • Python 数据结构之十大经典排序算法一文通关

    目录 1.冒泡排序 算法演示 算法步骤 算法实现 2.选择排序 算法演示 算法步骤 算法实现 3.简单插入排序 算法演示 算法步骤 算法实现 4.希尔排序 算法演示 算法步骤 算法实现 5.归并排序 算法演示 算法步骤 算法实现 6.快速排序 算法演示 算法步骤 算法实现 7.堆排序 算法演示 算法步骤 算法实现 8.计数排序 算法演示 算法步骤 算法实现 9.桶排序 算法演示 算法步骤 算法实现 10.基数排序 算法演示 算法步骤 算法实现 一文搞掂十大经典排序算法 今天整理一下十大经典排序算

  • Python 十大经典排序算法实现详解

    目录 关于时间复杂度 关于稳定性 名词解释 1.冒泡排序 (1)算法步骤 (2)动图演示 (3)Python代码 2.选择排序 (1)算法步骤 (2)动图演示 (3)Python代码 3.插入排序 (1)算法步骤 (2)动图演示 (3)Python代码 4.希尔排序 (1)算法步骤 (2)Python代码 5.归并排序 (1)算法步骤 (2)动图演示 (3)Python代码 6.快速排序 (1)算法步骤 (2)动图演示 (3)Python代码 7.堆排序 (1)算法步骤 (2)动图演示 (3)P

  • Java十大经典排序算法图解

    目录 0.算法概述 0.1 算法分类 0.2 算法复杂度 0.3 相关概念 1.冒泡排序(Bubble Sort) 1.1 算法描述 1.2 动图演示 1.3 代码实现 2.选择排序(Selection Sort) 2.1 算法描述 2.2 动图演示 2.3 代码实现 2.4 算法分析 3.插入排序(Insertion Sort) 3.1 算法描述 3.2 动图演示 3.3代码实现 3.4 算法分析 4.希尔排序(Shell Sort) 4.1 算法描述 4.2 动图演示 4.3 代码实现 4.

  • Java十大经典排序算法的实现图解

    目录 前言 一.排序算法 1.排序算法概述(百度百科) 2.<数据结构与算法>中的排序算法 3.算法分析 二.十大经典排序算法(Java开发版) 1.冒泡排序 2.快速排序 3.基数排序 4.插入排序 5.选择排序 6.希尔排序 7.归并排序 8.计数排序 9.堆排序 10.桶排序 前言 本文章主要是讲解我个人在学习Java开发环境的排序算法时做的一些准备,以及个人的心得体会,汇集成本篇文章,作为自己对排序算法理解的总结与笔记. 内容主要是关于十大经典排序算法的简介.原理.动静态图解和源码实现

  • python实现经典排序算法的示例代码

    以下排序算法最终结果都默认为升序排列,实现简单,没有考虑特殊情况,实现仅表达了算法的基本思想. 冒泡排序 内层循环中相邻的元素被依次比较,内层循环第一次结束后会将最大的元素移到序列最右边,第二次结束后会将次大的元素移到最大元素的左边,每次内层循环结束都会将一个元素排好序. def bubble_sort(arr): length = len(arr) for i in range(length): for j in range(length - i - 1): if arr[j] > arr[j

  •  Java数据结构的十大排序

    目录 1.直接插入排序 1.1 动图演示 1.2 插入排序的思路 1.3 代码实现 1.4 性能分析 2.希尔排序 2.1 原理 2.2 动图演示 2.3 代码实现 2.4 性能分析 3.直接选择排序 3.1 动图演示 3.2 代码实现 3.3 性能分析 4.堆排序 4.1 动图演示 4.2 代码实现 4.3 性能分析 5.冒泡排序 5.1 动图演示 5.2 代码实现 5.3 性能分析 6.快速排序 6.1 原理 6.2 动图演示 6.3 实现方法 6.3.1 Hoare法 6.3.2 挖坑法

  • Java多种经典排序算法(含动态图)

    算法分析 一个排序算法的好坏,一般是通过下面几个关键信息来分析的,下面先介绍一下这几个关键信息,然后再将常见的排序算法的这些关键信息统计出来. 名词介绍 时间复杂度:指对数据操作的次数(或是简单的理解为某段代码的执行次数).举例:O(1):常数时间复杂度:O(log n):对数时间复杂度:O(n):线性时间复杂度. 空间复杂度:某段代码每次执行时需要开辟的内存大小. 内部排序:不依赖外部的空间,直接在数据内部进行排序: 外部排序:数据的排序,不能通过内部空间来完成,需要依赖外部空间. 稳定排序:

  • 经典排序算法之冒泡排序(Bubble sort)代码

    经典排序算法 - 冒泡排序Bubble sort 原理是临近的数字两两进行比较,按照从小到大或者从大到小的顺序进行交换, 这样一趟过去后,最大或最小的数字被交换到了最后一位, 然后再从头开始进行两两比较交换,直到倒数第二位时结束,其余类似看例子 例子为从小到大排序, 原始待排序数组| 6 | 2 | 4 | 1 | 5 | 9 | 第一趟排序(外循环) 第一次两两比较6 > 2交换(内循环) 交换前状态| 6 | 2 | 4 | 1 | 5 | 9 | 交换后状态| 2 | 6 | 4 | 1

  • Java数据结构之基于比较的排序算法基本原理及具体实现

    目录 1. 七大基于比较的排序-总览 1.1常见基于比较的排序分类 1.2时间复杂度,空间复杂度以及稳定性. 2.直接插入排序 2.1 直接插入排序的基本思想 2.2 直接插入排序动画演示 2.3 代码示例 2.4 时间复杂度,空间复杂度以及稳定性 3. 希尔排序 3.1 算法思想 3.2 图片演示 3.3 代码示例 3.4 时间复杂度,空间复杂度以及稳定性 4.选择排序 4.1 算法思想 4.2 动画演示 4.3 代码示例 4.4 时间复杂度,空间复杂度以及稳定性 5.堆排序 5.1 算法思想

  • 七大经典排序算法图解

    目录 插入排序 ①直接插入排序 基本思想 动图演示 代码实现 ②希尔排序 基本思想 图示 代码实现 选择排序 ③直接选择排序 基本思想 动图演示 代码实现 ④堆排序 基本思想 建堆需要注意的问题 图示 代码实现 交换排序 ⑤冒泡排序 基本思想 动图演示 代码实现 ⑥快速排序 基本思想 基本框架 Partion函数分析 Partion函数的优化 快速排序代码实现 归并排序 ⑦归并排序 基本思想 动图演示 代码实现 排序算法复杂度及稳定性分析 插入排序 ①直接插入排序 基本思想 每次从一个有序序列开

随机推荐