Pytorch用Tensorboard来观察数据

目录
  • 1.Tensorboard
  • 1.使用add_scalar()输入代码
  • 2.使用add_image()输入代码

上一章讲数据的处理,这一章讲数据处理之后呈现的结果,即你有可能看到Loss的走向等,这样方便我们调试代码。

1.Tensorboard

有两个常用的方法:

  • 一个是add_scalar()显:示曲线
  • 一个是add_image()显示图像

首先安装Tensorboard

在你的编译环境(conda activate XXX)中输入命令

pip install tensorboard

1.使用add_scalar()输入代码

from torch.utils.tensorboard import SummaryWriter #调包

writer = SummaryWriter('logs') # 这里你创建了一个logs的文件装你的add_scalar生成的曲线,
#其中writer.add_scalar()第一个量是曲线的名字,
#第二个量是纵坐标scalar_value,第三个量是横坐标global_step(也可以理解为损失值得步长)
for i in range(100):
    writer.add_scalar("quadratic", i ** 2, i)

writer.close()

打开这个Tensorboard文件

tensorboard --logdir=logs
#1.这个logdir的文件名必须要与之前所创建的文件名一致,不然很容易报错,No dashboards are active for the current data set.
#2.这个tensorboard输入的命令,必须是在logs文件的上一层文件中,不然也很容易报错,No dashboards are active for the current data set.

结果现实:

2.使用add_image()输入代码

注意:add_image()中函数一般有三个量:
第一个是图像的名字,第二个是图像(必须是tensor或者numpy.ndarray),第三个是步长(可理解为训练或者测试阶段到哪幅图像了);
其中,图像的shape必须是CHW,但是有opencv读取的图像shape是HWC,
所以得使用dataformats转换以下将图像的shape转换为HWC

下面的代码测试了两张图(一张是来自aligned的图像,一张是来自original的图像)用来模拟训练或者测试阶段程序运行到哪张图

from torch.utils.tensorboard import SummaryWriter
import cv2

writer = SummaryWriter('logs')
aligned_img_path = "D:\\data\\basic\\Image\\aligned\\test_0001_aligned.jpg"
original_img_path = "D:\\data\\basic\\Image\\original\\test_0001.jpg"
aligned_img = cv2.imread(aligned_img_path)
original_img = cv2.imread(original_img_path)
print(type(aligned_img)) # numpy
print(aligned_img.shape)
# writer.add_image("img", aligned_img, 1, dataformats='HWC') #此图已经在我第一次测试add_image()用过了
writer.add_image("img", original_img, 2, dataformats='HWC')#此图是我在第二个测试
writer.close()

实现结果:

tensorboard中出现了IMAGES,并且step1是aligned的图,而step2是original的图

到此这篇关于Pytorch用Tensorboard来观察数据的文章就介绍到这了,更多相关Pytorch使用Tensorboard内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 在Pytorch中简单使用tensorboard

    一.tensorboard的简要介绍 TensorBoard是一个独立的包(不是pytorch中的),这个包的作用就是可视化您模型中的各种参数和结果. 下面是安装: pip install tensorboard 安装 TensorBoard 后,这些实用程序使您可以将 PyTorch 模型和指标记录到目录中,以便在 TensorBoard UI 中进行可视化. PyTorch 模型和张量以及 Caffe2 网络和 Blob 均支持标量,图像,直方图,图形和嵌入可视化. SummaryWrite

  • pytorch使用tensorboardX进行loss可视化实例

    最近pytorch出了visdom,也没有怎么去研究它,主要是觉得tensorboardX已经够用,而且用起来也十分的简单 pip install tensorboardX 然后在代码里导入 from tensorboardX import SummaryWriter 然后声明一下自己将loss写到哪个路径下面 writer = SummaryWriter('./log') 然后就可以愉快的写loss到你得这个writer了 niter = epoch * len(train_loader) +

  • Pytorch中TensorBoard及torchsummary的使用详解

    1.TensorBoard神经网络可视化工具 TensorBoard是一个强大的可视化工具,在pytorch中有两种调用方法: 1.from tensorboardX import SummaryWriter 这种方法是在官方还不支持tensorboard时网上有大神写的 2.from torch.utils.tensorboard import SummaryWriter 这种方法是后来更新官方加入的 1.1 调用方法 1.1.1 创建接口SummaryWriter 功能:创建接口 调用方法:

  • 教你如何在Pytorch中使用TensorBoard

    什么是TensorboardX Tensorboard 是 TensorFlow 的一个附加工具,可以记录训练过程的数字.图像等内容,以方便研究人员观察神经网络训练过程.可是对于 PyTorch 等其他神经网络训练框架并没有功能像 Tensorboard 一样全面的类似工具,一些已有的工具功能有限或使用起来比较困难 (tensorboard_logger, visdom等) .TensorboardX 这个工具使得 TensorFlow 外的其他神经网络框架也可以使用到 Tensorboard

  • pytorch下tensorboard的使用程序示例

    目录 一.tensorboard程序实例: 1.代码 2.在命令提示符中操作 3.在浏览器中打开网址 4.效果 二.writer.add_scalar()与writer.add_scalars()参数说明 1.概述 2.参数说明 3.writer.add_scalar()效果 4.writer.add_scalars()效果 我们都知道tensorflow框架可以使用tensorboard这一高级的可视化的工具,为了使用tensorboard这一套完美的可视化工具,未免可以将其应用到Pytorc

  • Pytorch用Tensorboard来观察数据

    目录 1.Tensorboard 1.使用add_scalar()输入代码 2.使用add_image()输入代码 上一章讲数据的处理,这一章讲数据处理之后呈现的结果,即你有可能看到Loss的走向等,这样方便我们调试代码. 1.Tensorboard 有两个常用的方法: 一个是add_scalar()显:示曲线 一个是add_image()显示图像 首先安装Tensorboard 在你的编译环境(conda activate XXX)中输入命令 pip install tensorboard 1

  • pytorch 调整某一维度数据顺序的方法

    在pytorch中,Tensor是以引用的形式存在的,故而并不能直接像python交换数据那样 a = torch.Tensor(3,4) a[0],a[1] = a[1],a[0] # 这会导致a的结果为a=(a[1],a[1],a[2]) # 而非预期的(a[1],a[0],a[2]) 这是因为引用赋值导致的,在交换过程,如下所示,当b的值赋值与a的时候,因为tmp指针与a是同一变量的不同名,故而tmp的内容也会变为b. # 交换a,b a,b = b,a # 等价于 tmp = a a =

  • pytorch制作自己的LMDB数据操作示例

    本文实例讲述了pytorch制作自己的LMDB数据操作.分享给大家供大家参考,具体如下: 前言 记录下pytorch里如何使用lmdb的code,自用 制作部分的Code code就是ASTER里数据制作部分的代码改了点,aster_train.txt里面就算图片的完整路径每行一个,图片同目录下有同名的txt,里面记着jpg的标签 import os import lmdb # install lmdb by "pip install lmdb" import cv2 import n

  • pytorch 批次遍历数据集打印数据的例子

    我就废话不多说了,直接上代码吧! from os import listdir import os from time import time import torch.utils.data as data import torchvision.transforms as transforms from torch.utils.data import DataLoader def printProgressBar(iteration, total, prefix='', suffix='', d

  • pytorch 数据处理:定义自己的数据集合实例

    数据处理 版本1 #数据处理 import os import torch from torch.utils import data from PIL import Image import numpy as np #定义自己的数据集合 class DogCat(data.Dataset): def __init__(self,root): #所有图片的绝对路径 imgs=os.listdir(root) self.imgs=[os.path.join(root,k) for k in imgs

  • PyTorch 使用torchvision进行图片数据增广

    目录 使用torchvision来进行图片的数据增广 1. 读取图片 2. 图片增广 2.1 图片水平翻转 2.2 图片上下翻转 2.3 图片旋转 2.4 中心裁切 2.5 随机裁切 2.6 随机裁切并修改尺寸 2. 7 修改图片颜色 3. 训练数据集加载 使用torchvision来进行图片的数据增广 数据增强就是增强一个已有数据集,使得有更多的多样性.对于图片数据来说,就是改变图片的颜色和形状等等.比如常见的: 左右翻转,对于大多数数据集都可以使用:上下翻转:部分数据集不适合使用:图片切割:

  • python神经网络Pytorch中Tensorboard函数使用

    目录 所需库的安装 常用函数功能 1.SummaryWriter() 2.writer.add_graph() 3.writer.add_scalar() 4.tensorboard --logdir= 示例代码 所需库的安装 很多人问Pytorch要怎么可视化,于是决定搞一篇. tensorboardX==2.0 tensorflow==1.13.2 由于tensorboard原本是在tensorflow里面用的,所以需要装一个tensorflow.会自带一个tensorboard. 也可以不

  • Pytorch 如何加速Dataloader提升数据读取速度

    在利用DL解决图像问题时,影响训练效率最大的有时候是GPU,有时候也可能是CPU和你的磁盘. 很多设计不当的任务,在训练神经网络的时候,大部分时间都是在从磁盘中读取数据,而不是做 Backpropagation . 这种症状的体现是使用 Nividia-smi 查看 GPU 使用率时,Memory-Usage 占用率很高,但是 GPU-Util 时常为 0% ,如下图所示: 如何解决这种问题呢? 在 Nvidia 提出的分布式框架 Apex 里面,我们在源码里面找到了一个简单的解决方案: htt

随机推荐