40个你可能不知道的Python技巧附代码

1、拆箱

>>> a, b, c = 1, 2, 3
>>> a, b, c
(1, 2, 3)
>>> a, b, c = [1, 2, 3]
>>> a, b, c
(1, 2, 3)
>>> a, b, c = (2 * i + 1 for i in range(3))
>>> a, b, c
(1, 3, 5)
>>> a, (b, c), d = [1, (2, 3), 4]
>>> a
1
>>> b
2
>>> c
3
>>> d
4

2、使用拆箱进行变量交换

>>> a, b = 1, 2
>>> a, b = b, a
>>> a, b
(2, 1)

3、扩展的拆箱(Python 3支持)

>>> a, *b, c = [1, 2, 3, 4, 5]
>>> a
1
>>> b
[2, 3, 4]
>>> c
5

4、负数索引

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[-1]
10
>>> a[-3]
8

5、列表切片(a[start:end])

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[2:8]
[2, 3, 4, 5, 6, 7]

6、负数索引的列表切片

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[-4:-2]
[7, 8]

7、带步数的列表切片(a[start:end:step])

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[::2]
[0, 2, 4, 6, 8, 10]
>>> a[::3]
[0, 3, 6, 9]
>>> a[2:8:2]
[2, 4, 6]

8、负数步数的列表切片

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[::-1]
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
>>> a[::-2]
[10, 8, 6, 4, 2, 0]

9、列表切片赋值

>>> a = [1, 2, 3, 4, 5]
>>> a[2:3] = [0, 0]
>>> a
[1, 2, 0, 0, 4, 5]
>>> a[1:1] = [8, 9]
>>> a
[1, 8, 9, 2, 0, 0, 4, 5]
>>> a[1:-1] = []
>>> a
[1, 5]

10、切片命名(slice(start, end, step))

>>> a = [0, 1, 2, 3, 4, 5]
>>> LASTTHREE = slice(-3, None)
>>> LASTTHREE
slice(-3, None, None)
>>> a[LASTTHREE]
[3, 4, 5]

11、遍历列表索引和值(enumerate)

>>> a = ["Hello", "world", "!"]
>>> for i, x in enumerate(a):
... print "{}: {}".format(i, x)
...
0: Hello
1: world
2: !

12、遍历字典的KEY和VALUE(dict.iteritems)

>>> m = {"a": 1, "b": 2, "c": 3, "d": 4}
>>> for k, v in m.iteritems():
... print "{}: {}".format(k, v)
...
a: 1
c: 3
b: 2
d: 4

# 注意:Python 3中要使用dict.items

13、压缩 & 解压列表和可遍历对象

>>> a = [1, 2, 3]
>>> b = ["a", "b", "c"]
>>> z = zip(a, b)
>>> z
[(1, "a"), (2, "b"), (3, "c")]
>>> zip(*z)
[(1, 2, 3), ("a", "b", "c")]

14、使用zip分组相邻列表项

>>> a = [1, 2, 3, 4, 5, 6]

>>> # Using iterators
>>> group_adjacent = lambda a, k: zip(*([iter(a)] * k))
>>> group_adjacent(a, 3)
[(1, 2, 3), (4, 5, 6)]
>>> group_adjacent(a, 2)
[(1, 2), (3, 4), (5, 6)]
>>> group_adjacent(a, 1)
[(1,), (2,), (3,), (4,), (5,), (6,)]

>>> # Using slices
>>> from itertools import islice
>>> group_adjacent = lambda a, k: zip(*(islice(a, i, None, k) for i in range(k)))
>>> group_adjacent(a, 3)
[(1, 2, 3), (4, 5, 6)]
>>> group_adjacent(a, 2)
[(1, 2), (3, 4), (5, 6)]
>>> group_adjacent(a, 1)
[(1,), (2,), (3,), (4,), (5,), (6,)]

15、使用zip & iterators实现推拉窗(n-grams)

>>> from itertools import islice
>>> def n_grams(a, n):
... z = (islice(a, i, None) for i in range(n))
... return zip(*z)
...
>>> a = [1, 2, 3, 4, 5, 6]
>>> n_grams(a, 3)
[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]
>>> n_grams(a, 2)
[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]
>>> n_grams(a, 4)
[(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)]

16、使用zip反相字典对象

>>> m = {"a": 1, "b": 2, "c": 3, "d": 4}
>>> m.items()
[("a", 1), ("c", 3), ("b", 2), ("d", 4)]
>>> zip(m.values(), m.keys())
[(1, "a"), (3, "c"), (2, "b"), (4, "d")]
>>> mi = dict(zip(m.values(), m.keys()))
>>> mi
{1: "a", 2: "b", 3: "c", 4: "d"}

17、合并列表

>>> a = [[1, 2], [3, 4], [5, 6]]
>>> list(itertools.chain.from_iterable(a))
[1, 2, 3, 4, 5, 6]

>>> sum(a, [])
[1, 2, 3, 4, 5, 6]

>>> [x for l in a for x in l]
[1, 2, 3, 4, 5, 6]

>>> a = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
>>> [x for l1 in a for l2 in l1 for x in l2]
[1, 2, 3, 4, 5, 6, 7, 8]

>>> a = [1, 2, [3, 4], [[5, 6], [7, 8]]]
>>> flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x]
>>> flatten(a)
[1, 2, 3, 4, 5, 6, 7, 8]
Note: according to Python"s documentation on sum, itertools.chain.from_iterable is the preferred method for this.

18、生成器

>>> g = (x ** 2 for x in xrange(10))
>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> sum(x ** 3 for x in xrange(10))
2025
>>> sum(x ** 3 for x in xrange(10) if x % 3 == 1)
408

19、字典解析

>>> m = {x: x ** 2 for x in range(5)}
>>> m
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

>>> m = {x: "A" + str(x) for x in range(10)}
>>> m
{0: "A0", 1: "A1", 2: "A2", 3: "A3", 4: "A4", 5: "A5", 6: "A6", 7: "A7", 8: "A8", 9: "A9"}

20、使用字典解析反相字典对象

>>> m = {"a": 1, "b": 2, "c": 3, "d": 4}
>>> m
{"d": 4, "a": 1, "b": 2, "c": 3}
>>> {v: k for k, v in m.items()}
{1: "a", 2: "b", 3: "c", 4: "d"}

21、命名的tuples(collections.namedtuple)

>>> Point = collections.namedtuple("Point", ["x", "y"])
>>> p = Point(x=4.0, y=2.0)
>>> p
Point(x=4.0, y=2.0)
>>> p.x
4.0
>>> p.y
2.0

22、继承命名tuples

>>> class Point(collections.namedtuple("PointBase", ["x", "y"])):
... __slots__ = ()
... def __add__(self, other):
... return Point(x=self.x + other.x, y=self.y + other.y)
...
>>> p = Point(x=4.0, y=2.0)
>>> q = Point(x=2.0, y=3.0)
>>> p + q
Point(x=6.0, y=5.0)

23、Set & Set运算

>>> A = {1, 2, 3, 3}
>>> A
set([1, 2, 3])
>>> B = {3, 4, 5, 6, 7}
>>> B
set([3, 4, 5, 6, 7])
>>> A | B
set([1, 2, 3, 4, 5, 6, 7])
>>> A & B
set([3])
>>> A - B
set([1, 2])
>>> B - A
set([4, 5, 6, 7])
>>> A ^ B
set([1, 2, 4, 5, 6, 7])
>>> (A ^ B) == ((A - B) | (B - A))
True

24、Multisets运算(collections.Counter)

>>> A = collections.Counter([1, 2, 2])
>>> B = collections.Counter([2, 2, 3])
>>> A
Counter({2: 2, 1: 1})
>>> B
Counter({2: 2, 3: 1})
>>> A | B
Counter({2: 2, 1: 1, 3: 1})
>>> A & B
Counter({2: 2})
>>> A + B
Counter({2: 4, 1: 1, 3: 1})
>>> A - B
Counter({1: 1})
>>> B - A
Counter({3: 1})

25、列表中出现最多的元素(collections.Counter)

>>> A = collections.Counter([1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7])
>>> A
Counter({3: 4, 1: 2, 2: 2, 4: 1, 5: 1, 6: 1, 7: 1})
>>> A.most_common(1)
[(3, 4)]
>>> A.most_common(3)
[(3, 4), (1, 2), (2, 2)]

26、双向队列(collections.deque)

>>> Q = collections.deque()
>>> Q.append(1)
>>> Q.appendleft(2)
>>> Q.extend([3, 4])
>>> Q.extendleft([5, 6])
>>> Q
deque([6, 5, 2, 1, 3, 4])
>>> Q.pop()
4
>>> Q.popleft()
6
>>> Q
deque([5, 2, 1, 3])
>>> Q.rotate(3)
>>> Q
deque([2, 1, 3, 5])
>>> Q.rotate(-3)
>>> Q
deque([5, 2, 1, 3])

27、限制长度的双向队列(collections.deque)

>>> last_three = collections.deque(maxlen=3)
>>> for i in xrange(10):
... last_three.append(i)
... print ", ".join(str(x) for x in last_three)
...
0
0, 1
0, 1, 2
1, 2, 3
2, 3, 4
3, 4, 5
4, 5, 6
5, 6, 7
6, 7, 8
7, 8, 9

28、排序字典(collections.OrderedDict)

>>> m = dict((str(x), x) for x in range(10))
>>> print ", ".join(m.keys())
1, 0, 3, 2, 5, 4, 7, 6, 9, 8
>>> m = collections.OrderedDict((str(x), x) for x in range(10))
>>> print ", ".join(m.keys())
0, 1, 2, 3, 4, 5, 6, 7, 8, 9
>>> m = collections.OrderedDict((str(x), x) for x in range(10, 0, -1))
>>> print ", ".join(m.keys())
10, 9, 8, 7, 6, 5, 4, 3, 2, 1

29、默认字典(collections.defaultdict)

>>> m = dict()
>>> m["a"]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: "a"
>>>
>>> m = collections.defaultdict(int)
>>> m["a"]
0
>>> m["b"]
0
>>> m = collections.defaultdict(str)
>>> m["a"]
""
>>> m["b"] += "a"
>>> m["b"]
"a"
>>> m = collections.defaultdict(lambda: "[default value]")
>>> m["a"]
"[default value]"
>>> m["b"]
"[default value]"

30、使用defaultdict代表tree

>>> import json
>>> tree = lambda: collections.defaultdict(tree)
>>> root = tree()
>>> root["menu"]["id"] = "file"
>>> root["menu"]["value"] = "File"
>>> root["menu"]["menuitems"]["new"]["value"] = "New"
>>> root["menu"]["menuitems"]["new"]["onclick"] = "new();"
>>> root["menu"]["menuitems"]["open"]["value"] = "Open"
>>> root["menu"]["menuitems"]["open"]["onclick"] = "open();"
>>> root["menu"]["menuitems"]["close"]["value"] = "Close"
>>> root["menu"]["menuitems"]["close"]["onclick"] = "close();"
>>> print json.dumps(root, sort_keys=True, indent=4, separators=(",", ": "))
{
"menu": {
"id": "file",
"menuitems": {
"close": {
"onclick": "close();",
"value": "Close"
},
"new": {
"onclick": "new();",
"value": "New"
},
"open": {
"onclick": "open();",
"value": "Open"
}
},
"value": "File"
}
}

# 查看更多:https://gist.github.com/hrldcpr/2012250

31、映射对象到唯一的计数数字(collections.defaultdict)

>>> import itertools, collections
>>> value_to_numeric_map = collections.defaultdict(itertools.count().next)
>>> value_to_numeric_map["a"]
0
>>> value_to_numeric_map["b"]
1
>>> value_to_numeric_map["c"]
2
>>> value_to_numeric_map["a"]
0
>>> value_to_numeric_map["b"]
1

32、最大 & 最小元素(heapq.nlargest and heapq.nsmallest)

>>> a = [random.randint(0, 100) for __ in xrange(100)]
>>> heapq.nsmallest(5, a)
[3, 3, 5, 6, 8]
>>> heapq.nlargest(5, a)
[100, 100, 99, 98, 98]

33、笛卡尔积(itertools.product)

>>> for p in itertools.product([1, 2, 3], [4, 5]):
(1, 4)
(1, 5)
(2, 4)
(2, 5)
(3, 4)
(3, 5)
>>> for p in itertools.product([0, 1], repeat=4):
... print "".join(str(x) for x in p)
...
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

34、组合(itertools.combinations and itertools.combinations_with_replacement)

>>> for c in itertools.combinations([1, 2, 3, 4, 5], 3):
... print "".join(str(x) for x in c)
...
123
124
125
134
135
145
234
235
245
345
>>> for c in itertools.combinations_with_replacement([1, 2, 3], 2):
... print "".join(str(x) for x in c)
...
11
12
13
22
23
33

35、排列(itertools.permutations)

>>> for p in itertools.permutations([1, 2, 3, 4]):
... print "".join(str(x) for x in p)
...
1234
1243
1324
1342
1423
1432
2134
2143
2314
2341
2413
2431
3124
3142
3214
3241
3412
3421
4123
4132
4213
4231
4312
4321

36、链接可遍历对象(itertools.chain)

>>> a = [1, 2, 3, 4]
>>> for p in itertools.chain(itertools.combinations(a, 2), itertools.combinations(a, 3)):
... print p
...
(1, 2)
(1, 3)
(1, 4)
(2, 3)
(2, 4)
(3, 4)
(1, 2, 3)
(1, 2, 4)
(1, 3, 4)
(2, 3, 4)
>>> for subset in itertools.chain.from_iterable(itertools.combinations(a, n) for n in range(len(a) + 1))
... print subset
...
()
(1,)
(2,)
(3,)
(4,)
(1, 2)
(1, 3)
(1, 4)
(2, 3)
(2, 4)
(3, 4)
(1, 2, 3)
(1, 2, 4)
(1, 3, 4)
(2, 3, 4)
(1, 2, 3, 4)

37、根据给定的KEY分组(itertools.groupby)

>>> from operator import itemgetter
>>> import itertools
>>> with open("contactlenses.csv", "r") as infile:
... data = [line.strip().split(",") for line in infile]
...
>>> data = data[1:]
>>> def print_data(rows):
... print " ".join(" ".join("{: <16}".format(s) for s in row) for row in rows)
...

>>> print_data(data)
young myope no reduced none
young myope no normal soft
young myope yes reduced none
young myope yes normal hard
young hypermetrope no reduced none
young hypermetrope no normal soft
young hypermetrope yes reduced none
young hypermetrope yes normal hard
pre-presbyopic myope no reduced none
pre-presbyopic myope no normal soft
pre-presbyopic myope yes reduced none
pre-presbyopic myope yes normal hard
pre-presbyopic hypermetrope no reduced none
pre-presbyopic hypermetrope no normal soft
pre-presbyopic hypermetrope yes reduced none
pre-presbyopic hypermetrope yes normal none
presbyopic myope no reduced none
presbyopic myope no normal none
presbyopic myope yes reduced none
presbyopic myope yes normal hard
presbyopic hypermetrope no reduced none
presbyopic hypermetrope no normal soft
presbyopic hypermetrope yes reduced none
presbyopic hypermetrope yes normal none

>>> data.sort(key=itemgetter(-1))
>>> for value, group in itertools.groupby(data, lambda r: r[-1]):
... print "-----------"
... print "Group: " + value
... print_data(group)
...
-----------
Group: hard
young myope yes normal hard
young hypermetrope yes normal hard
pre-presbyopic myope yes normal hard
presbyopic myope yes normal hard
-----------
Group: none
young myope no reduced none
young myope yes reduced none
young hypermetrope no reduced none
young hypermetrope yes reduced none
pre-presbyopic myope no reduced none
pre-presbyopic myope yes reduced none
pre-presbyopic hypermetrope no reduced none
pre-presbyopic hypermetrope yes reduced none
pre-presbyopic hypermetrope yes normal none
presbyopic myope no reduced none
presbyopic myope no normal none
presbyopic myope yes reduced none
presbyopic hypermetrope no reduced none
presbyopic hypermetrope yes reduced none
presbyopic hypermetrope yes normal none
-----------
Group: soft
young myope no normal soft
young hypermetrope no normal soft
pre-presbyopic myope no normal soft
pre-presbyopic hypermetrope no normal soft
presbyopic hypermetrope no normal soft

38、在任意目录启动HTTP服务

python -m SimpleHTTPServer 5000
Serving HTTP on 0.0.0.0 port 5000 ...

39、Python之禅

>>> import this
The Zen of Python, by Tim Peters
 
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren"t special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you"re Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it"s a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let"s do more of those!

40、使用C风格的大括号代替Python缩进来表示作用域

>>> from __future__ import braces

这篇文章就介绍到这了,更多内容请查看相关文章。

(0)

相关推荐

  • Python装饰器使用你可能不知道的几种姿势

    前言 在Python中,装饰器是一种十分强大并且好用的语法,一些重复的代码使用装饰器语法的话能够使代码更容易理解及阅读. 因此在这里简单总结了一下Python中装饰器的几种用法以及需要注意的事情. 一.在装饰器中获取被装饰函数的参数 假设我们在开发web的时候,需要做反爬.要判断接口的访问来源我们就可以通过下面装饰器的方法来实现: def mydecorator(func): def wrapped(*args, **kwargs): print("进入装饰器") if args[0]

  • 你所不知道的Python奇技淫巧13招【实用】

    有时候你会看到很Cool的Python代码,你惊讶于它的简洁,它的优雅,你不由自主地赞叹:竟然还能这样写.其实,这些优雅的代码都要归功于Python的特性,只要你能掌握这些Pythonic的技巧,你一样可以写出像诗一样的Python代码. 1.导入模块 你是不是经常对调用模块时输入一长串模块索引感到头疼?说实在的,数量少的时候或许还可以勉强忍受,一旦程序规模上去了,这也是一项不容小觑的工程. #Bad import urllib.request url = r'http://www.landsb

  • 不知道这5种下划线的含义,你就不算真的会Python!

    什么是 Python? Python 之父 Guido van Rossum 说:Python是一种高级程序语言,其核心设计哲学是代码可读性和语法,能够让程序员用很少的代码来表达自己的想法. 对于我来说,学习 Python 的首要原因是,Python 是一种可以优雅编程的语言.它能够简单自然地写出代码和实现我的想法. 另一个原因是我们可以将 Python 用在很多地方:人工智能.数据科学.Web 开发和机器学习等都可以使用 Python 来开发. 国庆期间后台有小伙伴留言问我:"Python变量

  • 你可能不知道的Python 技巧小结

    译者 | 豌豆花下猫 声明 :本文获得原作者授权翻译,转载请保留原文出处,请勿用于商业或非法用途. 有许许多多文章写了 Python 中的许多很酷的特性,例如变量解包.偏函数.枚举可迭代对象,但是关于 Python 还有很多要讨论的话题,因此在本文中,我将尝试展示一些我知道的和在使用的,但很少在其它文章提到过的特性.那就开始吧. 1.对输入的字符串"消毒" 对用户输入的内容"消毒",这问题几乎适用于你编写的所有程序.通常将字符转换为小写或大写就足够了,有时你还可以使

  • 40个你可能不知道的Python技巧附代码

    1.拆箱 >>> a, b, c = 1, 2, 3 >>> a, b, c (1, 2, 3) >>> a, b, c = [1, 2, 3] >>> a, b, c (1, 2, 3) >>> a, b, c = (2 * i + 1 for i in range(3)) >>> a, b, c (1, 3, 5) >>> a, (b, c), d = [1, (2, 3),

  • 经验丰富程序员才知道的8种高级Python技巧

    本文将介绍8个简洁的Python技巧,若非经验十足的程序员,你肯定有些从未见过.向着更简洁更高效,出发吧! 1.通过多个键值将对象进行排序 假设要对以下字典列表进行排序: people = [ { 'name': 'John', "age": 64 }, { 'name': 'Janet', "age": 34 }, { 'name': 'Ed', "age": 24 }, { 'name': 'Sara', "age": 6

  • 关于Go你不得不知道的一些实用小技巧

    目录 Go 箴言 Go 之禅 代码 使用 go fmt 格式化 多个 if 语句可以折叠成 switch 用 chan struct{} 来传递信号, chan bool 表达的不够清楚 30 * time.Second 比 time.Duration(30) * time.Second 更好 用 time.Duration 代替 int64 + 变量名 按类型分组 const 声明,按逻辑和/或类型分组 var 不要在你不拥有的结构上使用 encoding/gob 不要依赖于计算顺序,特别是在

  • 18个帮你简化代码的Python技巧分享

    目录 什么是单行代码 为什么我需要它们 开始 1.if-else 2. elif 3. if 4.函数 5.循环(列表推导式) 6. if 循环 7. if else 循环 8. While 循环与 if else 9. 变量交换 10. 多重赋值 11. 将字符串写入文件 12.快速排序 13. 斐波那契数列 14. HTTP 服务器 15. 嵌套 For 循环 16. 输出不换行 17.类 18. 海象运算符:=(Python 3.8) 结论 大家好,我是海拥,在今天的博客中,我们将讨论 P

  • 你可能不知道的Shell(有趣的知识)

    Shell也叫做命令行界面,它是*nix操作系统下用户和计算机的交互界面.Shell这个词是指操作系统中提供访问内核服务的程序. 这篇文章向大家介绍Shell一些非广为人知.但却实用有趣的知识,权当品尝shell主食后的甜点吧. 科普 先科普几个你可能不知道的事实: Shell几乎是和Unix操作系统一起诞生,第一个Unix Shell是肯·汤普逊(Ken Thompson)以Multics上的Shell为模范在1971年改写而成,并命名Thompson sh.即便是后来流行的bash(shel

  • 关于bash函数你可能不知道的一些事情(译)

    关于bash函数,这里有一些您不知道的东西.通常当你写一个函数时,你会这样做: function name () { ... } 不是吗?我知道你会这么做,因为这是所有人写函数的方式.这就是我要说的.在bash中 {-} 并不像在JavaScript或c中那样意味着"函数的主体"或"函数的范围",它实际上是一个复合命令.你可以做各种稀奇古怪的事情,比如: function fileExists () [[ -f $1 ]] 不需要那些花括号!者你可以这样做: fun

  • JS数组reduce你不得不知道的25个高级用法

    前言 reduce作为ES5新增的常规数组方法之一,对比forEach.filter和map,在实际使用上好像有些被忽略,发现身边的人极少使用它,导致这个如此强大的方法被逐渐埋没. 如果经常使用reduce,怎么可能放过如此好用的它呢!我还是得把他从尘土中取出来擦干净,奉上它的高级用法给大家.一个如此好用的方法不应该被大众埋没. 下面对reduce的语法进行简单说明,详情可查看MDN的reduce()的相关说明. 定义:对数组中的每个元素执行一个自定义的累计器,将其结果汇总为单个返回值 形式:a

  • 17条提高工作效率的Python技巧分享

    目录 1.引言 2.技巧总结 2.1.处理用户的多个输入 2.2.处理多个条件语句 2.3.判断数字奇偶性 2.4.交换变量 2.5.反转字符串 2.6.判断字符串是否为回文串 2.7.尽量使用 Inline if statement 2.8.删除list中的重复元素 2.9.找到list中重复最多的元素 2.10.list 生成式 2.11.使用*args传递多个参数 2.12.在循环时处理下标 2.13.拼接list中多个元素 2.14.将两个字典进行合并 2.15.使用两个list生成一个

随机推荐