python opencv 实现对图像边缘扩充
原始图像
根据图像的边界的像素值,向外扩充图片,每个方向扩充50个像素。
a = cv2.copyMakeBorder(img,50,50,50,50,cv2.BORDER_REPLICATE)
把靠近边界的50个像素翻折出去(轴对称):
a = cv2.copyMakeBorder(img,50,50,50,50,cv2.BORDER_REFLECT)
常数填充:
a = cv2.copyMakeBorder(img,50,50,50,50, cv2.BORDER_CONSTANT,value=[0,255,0])
以上这篇python opencv 实现对图像边缘扩充就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
Python Opencv实现图像轮廓识别功能
本文实例为大家分享了python opencv识别图像轮廓的具体代码,供大家参考,具体内容如下 要求:用矩形或者圆形框住图片中的云朵(不要求全部框出) 轮廓检测 Opencv-Python接口中使用cv2.findContours()函数来查找检测物体的轮廓. import cv2 img = cv2.imread('cloud.jpg') # 灰度图像 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 二值化 ret, binary = cv2.th
-
通过 Python 和 OpenCV 实现目标数量监控
今天我们将利用python+OpenCV实现对视频中物体数量的监控,达到视频监控的效果,比如洗煤厂的监控水龙头的水柱颜色,当水柱为黑色的超过了一半,那么将说明过滤网发生了故障.当然不仅如此,我们看的是图像视频处理的技巧,你也可以将项目迁移到其他地方等,这仅仅是一个例子而已.我们知道计算机视觉中关于图像识别有四大类任务: . 分类-Classification:解决"是什么?"的问题,即给定一张图片或一段视频判断里面包含什么类别的目标. 定位-Location:解决"在哪里?&
-
Python OpenCV处理图像之图像像素点操作
本文实例为大家分享了Python OpenCV图像像素点操作的具体代码,供大家参考,具体内容如下 0x01. 像素 有两种直接操作图片像素点的方法: 第一种办法就是将一张图片看成一个多维的list,例如对于一张图片im,想要操作第四行第四列的像素点就直接 im[3,3] 就可以获取到这个点的RGB值. 第二种就是使用 OpenCV 提供的 Get1D. Get2D 等函数. 推荐使用第一种办法吧,毕竟简单. 0x02. 获取行和列像素 有一下四个函数: cv.GetCol(im, 0): 返回第
-
Python OpenCV之图片缩放的实现(cv2.resize)
OpenCV函数原型: cv2.resize(InputArray src, OutputArray dst, Size, fx, fy, interpolation) 参数解释: InputArray src 输入图片 OutputArray dst 输出图片 Size 输出图片尺寸 fx, fy 沿x轴,y轴的缩放系数 interpolation 插入方式 interpolation 选项所用的插值方法: INTER_NEAREST 最近邻插值 INTER_LINEAR 双线性插值(默认设置
-
python通过opencv实现图片裁剪原理解析
这篇文章主要介绍了python通过opencv实现图片裁剪原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 图像裁剪的基本概念 : 图像裁剪是指将图像中我们想要的研究区以外的区域去除,经常是按照行政区划或研究区域的边界对图像进行裁剪.例如,一张500×400的图像,我们只想要中间的250×200的区域,就可以使用图像裁剪将四周的区域去除. 在实际开发工作中,我们经常需要对图像进行分幅裁剪,按照ERDAS实际图像分幅裁剪的过程,可以将图像分
-
python opencv 实现对图像边缘扩充
原始图像 根据图像的边界的像素值,向外扩充图片,每个方向扩充50个像素. a = cv2.copyMakeBorder(img,50,50,50,50,cv2.BORDER_REPLICATE) 把靠近边界的50个像素翻折出去(轴对称): a = cv2.copyMakeBorder(img,50,50,50,50,cv2.BORDER_REFLECT) 常数填充: a = cv2.copyMakeBorder(img,50,50,50,50, cv2.BORDER_CONSTANT,value
-
Python OpenCV学习之图像滤波详解
目录 背景 一.卷积相关概念 二.卷积实战 三.均值滤波 四.高斯滤波 五.中值滤波 六.双边滤波 七.Sobel算子 八.Scharr算子 九.拉普拉斯算子 十.Canny算法 背景 图像滤波的作用简单来说就是将一副图像通过滤波器得到另一幅图像:明确一个概念,滤波器又被称为卷积核,滤波的过程又被称为卷积:实际上深度学习就是训练许多适应任务的滤波器,本质上就是得到最佳的参数:当然在深度学习之前,也有一些常见的滤波器,本篇主要介绍这些常见的滤波器: 一.卷积相关概念 卷积核大小一般为奇数的原因:
-
Python OpenCV学习之图像形态学
目录 背景 一.图像二值化 二.自适应阈值 三.腐蚀 四.卷积核获取 五.膨胀 六.开运算 七.闭运算 八.形态学梯度 九.顶帽运算 十.黑帽运算 总结 背景 形态学处理方法是基于对二进制图像进行处理的,卷积核决定图像处理后的效果:形态学的处理哦本质上相当于对图像做前处理,提取出有用的特征,以便后续的目标识别等任务: 一.图像二值化 定义:将图像的每个像素变成两种值,如0和255: 全局二值化的函数原型: threshold(img,thresh,maxVal,type) img:最好是灰度图像
-
Python OpenCV图像处理之图像滤波特效详解
目录 1分类 2邻域滤波 2.1线性滤波 2.2非线性滤波 3频域滤波 3.1低通滤波 3.2高通滤波 1 分类 图像滤波按图像域可分为两种类型: 邻域滤波(Spatial Domain Filter),其本质是数字窗口上的数学运算.一般用于图像平滑.图像锐化.特征提取(如纹理测量.边缘检测)等,邻域滤波使用邻域算子——利用给定像素周围像素值以决定此像素最终输出的一种算子 频域滤波(Frequency Domain Filter),其本质是对像素频率的修改.一般用于降噪.重采样.图像压缩等. 按
-
Python OpenCV读取png图像转成jpg图像存储的方法
如下所示: import os import cv2 import sys import numpy as np path = "F:\\ImageLib\\VRWorks_360_Video _SDK_1.1\\footage14\\" print(path) for filename in os.listdir(path): if os.path.splitext(filename)[1] == '.png': # print(filename) img = cv2.imread(
-
Python+OpenCV实现将图像转换为二进制格式
在学习tensorflow的过程中,有一个问题,tensorflow在训练的过程中读取的是二进制图像数据库文件,而不是图像文件,因此 在进行训练.测试之前需要将图像文件转换为二进制格式. 下面是我在ubuntu中使用python+OpenCV读取图像并转换为二进制格式文件的代码. #coding=utf-8 ''' Created on 2016年3月24日 使用Opencv读取图像将其保存为二进制格式文件,再读取该二进制文件,转换为图像进行显示 @author: hanchao ''' imp
-
python opencv 找出图像中的最大轮廓并填充(生成mask)
本文主要介绍了python opencv 找出图像中的最大轮廓并填充,分享给大家,具体如下: import cv2 import numpy as np from PIL import Image from joblib import Parallel from joblib import delayed # Parallel 和 delayed是为了使用多线程处理 # 使用前需要安装joblib:pip install joblib # img_stack的shape为:num, h, w #
-
Python+OpenCV实现在图像上绘制矩形
话不多说,直接上代码 import copy import cv2 import numpy as np WIN_NAME = 'draw_rect' class Rect(object): def __init__(self): self.tl = (0, 0) self.br = (0, 0) def regularize(self): """ make sure tl = TopLeft point, br = BottomRight point ""
-
使用python opencv对畸变图像进行矫正的实现
代码: __Author__ = "Shliang" __Email__ = "shliang0603@gmail.com" import os import cv2 import numpy as np from tqdm import tqdm def undistort(frame): fx = 685.646752 cx = 649.107905 fy = 676.658033 cy = 338.054431 k1, k2, p1, p2, k3 = -0.
-
python opencv 图像处理之图像算数运算及修改颜色空间
目录 1.图像加法 1.1Numpy加法 1.2OpenCV加法 2.图像融合 3.改变颜色空间 1.图像加法 图像加法有两种方式,一种是通过 Numpy 直接对两个图像进行相加,另一种是通过 OpenCV 的 add() 函数进行相加. 不管使用哪种方法,相加的两个图像必须具有相同的深度和类型,简单理解就是图像的大小和类型必须一致. 1.1Numpy加法 Numpy 的运算方法是: img = img1 + img2 ,然后再对最终的运算结果取模. 当最终的像素值 <= 255 时,则运算结果
随机推荐
- python实现的DES加密算法和3DES加密算法实例
- CSS3 3D 技术手把手教你玩转
- 详解iOS的深浅拷贝
- 在CentOS6.5上使用Jexus安装部署ASP.NET MVC4和WebApi
- javascript 中对象的继承〔转贴〕
- 谈谈第三方App接入微信登录 解读
- php关于array_multisort多维数组排序的使用说明
- 详解php框架Yaf路由重写
- Python处理字符串之isspace()方法的使用
- Android实现底部弹出PopupWindow背景逐渐变暗效果
- Ajax同步和异步问题浅析及解决方法
- MySQL5.7.18下载和安装过程图文详解
- 详解Mysql多表联合查询效率分析及优化
- Android自定义SeekBar滑动显示数字
- C语言 文件操作解析详解及实例代码
- 为百度UE编辑器上传图片添加水印功能
- php中照片旋转 (orientation) 问题的正确处理
- IDEA 开发多项目依赖的方法(图文)
- PHP匿名函数(闭包函数)详解
- django ModelForm修改显示缩略图 imagefield类型的实例