Python使用Opencv实现边缘检测以及轮廓检测的实现

边缘检测

Canny边缘检测器是一种被广泛使用的算法,并被认为是边缘检测最优的算法,该方法使用了比高斯差分算法更复杂的技巧,如多向灰度梯度和滞后阈值化。

Canny边缘检测器算法基本步骤:

  • 平滑图像:通过使用合适的模糊半径执行高斯模糊来减少图像内的噪声。
  • 计算图像的梯度:这里计算图像的梯度,并将梯度分类为垂直、水平和斜对角。这一步的输出用于在下一步中计算真正的边缘。
  • 非最大值抑制:利用上一步计算出来的梯度方向,检测某一像素在梯度的正方向和负方向上是否是局部最大值,如果是,则抑制该像素(像素不属于边缘)。这是一种边缘细化技术,用最急剧的变换选出边缘点。
  • 用滞后阈值化选择边缘:最后一步,检查某一条边缘是否明显到足以作为最终输出,最后去除所有不明显的边缘。

Opencv使用Canny边缘检测相对简单,代码如下:

import cv2
import numpy as np

img = cv2.imread("hammer.jpg", 0)
cv2.imwrite("canny.jpg", cv2.Canny(img, 200, 300))
cv2.imshow("canny", cv2.imread("canny.jpg"))
cv2.waitKey()
cv2.destroyAllWindows()

运行结果:

Canny函数的原型为

cv2.Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient ]]])

必要参数:
第一个参数是需要处理的原图像,该图像必须为单通道的灰度图;
第二个参数是滞后阈值1;
第三个参数是滞后阈值2。

轮廓检测

轮廓检测主要由cv2.findContours函数实现的。
函数的原型为

cv2.findContours(image, mode, method[, contours[, hierarchy[, offset ]]]) 

函数参数
第一个参数是寻找轮廓的图像;

第二个参数表示轮廓的检索模式,有四种(本文介绍的都是新的cv2接口):

  • cv2.RETR_EXTERNAL表示只检测外轮廓 。
  • cv2.RETR_LIST检测的轮廓不建立等级关系。
  • cv2.RETR_CCOMP建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息。如果内孔内还有一个连通物体,这个物体的边界也在顶层。
  • cv2.RETR_TREE建立一个等级树结构的轮廓。

第三个参数method为轮廓的逼近方法

  • cv2.CHAIN_APPROX_NONE存储所有的轮廓点,相邻的两个点的像素位置差不超过1,即max(abs(x1-x2),abs(y2-y1))==1。
  • cv2.CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息。
  • cv2.CHAIN_APPROX_TC89_L1和cv2.CHAIN_APPROX_TC89_KCOS都是使用teh-Chinl chain近似算法。

返回值

如:image, contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

image:是原图像

contours:图像的轮廓,以列表的形式表示,每个元素都是图像中的一个轮廓。

hier:相应轮廓之间的关系。这是一个ndarray,其中的元素个数和轮廓个数相同,每个轮廓contours[i]对应4个hierarchy元素hierarchy[i][0] ~hierarchy[i][3],分别表示后一个轮廓、前一个轮廓、父轮廓、内嵌轮廓的索引编号,如果没有对应项,则该值为负数。

原图:

示例一

import cv2
import numpy as np

img = cv2.pyrDown(cv2.imread("hammer.jpg", cv2.IMREAD_UNCHANGED))
# threshold 函数对图像进行二化值处理,由于处理后图像对原图像有所变化,因此img.copy()生成新的图像,cv2.THRESH_BINARY是二化值
ret, thresh = cv2.threshold(cv2.cvtColor(img.copy(), cv2.COLOR_BGR2GRAY), 127, 255, cv2.THRESH_BINARY)
# findContours函数查找图像里的图形轮廓
# 函数参数thresh是图像对象
# 层次类型,参数cv2.RETR_EXTERNAL是获取最外层轮廓,cv2.RETR_TREE是获取轮廓的整体结构
# 轮廓逼近方法
# 输出的返回值,image是原图像、contours是图像的轮廓、hier是层次类型
image, contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

for c in contours:
  # 轮廓绘制方法一
  # boundingRect函数计算边框值,x,y是坐标值,w,h是矩形的宽和高
  x, y, w, h = cv2.boundingRect(c)
  # 在img图像画出矩形,(x, y), (x + w, y + h)是矩形坐标,(0, 255, 0)设置通道颜色,2是设置线条粗度
  cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)

  # 轮廓绘制方法二
  # 查找最小区域
  rect = cv2.minAreaRect(c)
  # 计算最小面积矩形的坐标
  box = cv2.boxPoints(rect)
  # 将坐标规范化为整数
  box = np.int0(box)
  # 绘制矩形
  cv2.drawContours(img, [box], 0, (0, 0, 255), 3)

  # 轮廓绘制方法三
  # 圆心坐标和半径的计算
  (x, y), radius = cv2.minEnclosingCircle(c)
  # 规范化为整数
  center = (int(x), int(y))
  radius = int(radius)
  # 勾画圆形区域
  img = cv2.circle(img, center, radius, (0, 255, 0), 2)

# # 轮廓绘制方法四
# 围绕图形勾画蓝色线条
cv2.drawContours(img, contours, -1, (255, 0, 0), 2)
# 显示图像
cv2.imshow("contours", img)
cv2.waitKey()
cv2.destroyAllWindows()

运行结果如图所示:

示例二

import cv2
import numpy as np

img = cv2.pyrDown(cv2.imread("hammer.jpg", cv2.IMREAD_UNCHANGED))
ret, thresh = cv2.threshold(cv2.cvtColor(img.copy(), cv2.COLOR_BGR2GRAY) , 127, 255, cv2.THRESH_BINARY)
# findContours函数查找图像里的图形轮廓
# 函数参数thresh是图像对象
# 层次类型,参数cv2.RETR_EXTERNAL是获取最外层轮廓,cv2.RETR_TREE是获取轮廓的整体结构
# 轮廓逼近方法
# 输出的返回值,image是原图像、contours是图像的轮廓、hier是层次类型
image, contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 创建新的图像black
black = cv2.cvtColor(np.zeros((img.shape[1], img.shape[0]), dtype=np.uint8), cv2.COLOR_GRAY2BGR)

for cnt in contours:
  # 轮廓周长也被称为弧长。可以使用函数 cv2.arcLength() 计算得到。这个函数的第二参数可以用来指定对象的形状是闭合的(True) ,还是打开的(一条曲线)
  epsilon = 0.01 * cv2.arcLength(cnt, True)
  # 函数approxPolyDP来对指定的点集进行逼近,cnt是图像轮廓,epsilon表示的是精度,越小精度越高,因为表示的意思是是原始曲线与近似曲线之间的最大距离。
  # 第三个函数参数若为true,则说明近似曲线是闭合的,它的首位都是相连,反之,若为false,则断开。
  approx = cv2.approxPolyDP(cnt, epsilon, True)
  # convexHull检查一个曲线的凸性缺陷并进行修正,参数cnt是图像轮廓。
  hull = cv2.convexHull(cnt)
  # 勾画图像原始的轮廓
  cv2.drawContours(black, [cnt], -1, (0, 255, 0), 2)
  # 用多边形勾画轮廓区域
  cv2.drawContours(black, [approx], -1, (255, 255, 0), 2)
  # 修正凸性缺陷的轮廓区域
  cv2.drawContours(black, [hull], -1, (0, 0, 255), 2)
# 显示图像
cv2.imshow("hull", black)
cv2.waitKey()
cv2.destroyAllWindows()

运行结果如图所示:

参考资料:OpenCV 3计算机视觉 Python语言实现第二版

到此这篇关于Python使用Opencv实现边缘检测以及轮廓检测的实现的文章就介绍到这了,更多相关Python 边缘检测内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python opencv实现图像边缘检测

    本文利用python opencv进行图像的边缘检测,一般要经过如下几个步骤: 1.去噪 如cv2.GaussianBlur()等函数: 2.计算图像梯度 图像梯度表达的是各个像素点之间,像素值大小的变化幅度大小,变化较大,则可以认为是出于边缘位置,最多可简化为如下形式: 3.非极大值抑制 在获得梯度的方向和大小之后,应该对整幅图像做一个扫描,去除那些非边界上的点.对每一个像素进行检查,看这个点的梯度是不是周围具有相同梯度方向的点中最大的.如下图所示: 4.滞后阈值 现在要确定那些边界才是真正的

  • 如何利用Python 进行边缘检测

    为何检测边缘? 我们首先应该了解的问题是:"为什么要费尽心思去做边缘检测?"除了它的效果很酷外,为什么边缘检测还是一种实用的技术?为了更好地解答这个问题,请仔细思考并对比下面的风车图片和它的"仅含边缘的图": 可以看到,左边的原始图像有着各种各样的色彩.阴影,而右边的"仅含边缘的图"是黑白的.如果有人问,哪一张图片需要更多的存储空间,你肯定会告诉他原始图像会占用更多空间.这就是边缘检测的意义:通过对图片进行边缘检测,丢弃大多数的细节,从而得到&q

  • OpenCV-Python实现轮廓检测实例分析

    相比C++而言,Python适合做原型.本系列的文章介绍如何在Python中用OpenCV图形库,以及与C++调用相应OpenCV函数的不同之处.这篇文章介绍在Python中使用OpenCV检测并绘制轮廓. 提示: 转载请详细注明原作者及出处,谢谢! 本文介绍在OpenCV-Python中检测并绘制轮廓的方法. 本文不介详细的理论知识,读者可从其他资料中获取相应的背景知识.笔者推荐清华大学出版社的<图像处理与计算机视觉算法及应用(第2版)>. 轮廓检测 轮廓检测也是图像处理中经常用到的.Ope

  • python Canny边缘检测算法的实现

    图像边缘信息主要集中在高频段,通常说图像锐化或检测边缘,实质就是高频滤波.我们知道微分运算是求信号的变化率,具有加强高频分量的作用.在空域运算中来说,对图像的锐化就是计算微分.对于数字图像的离散信号,微分运算就变成计算差分或梯度.图像处理中有多种边缘检测(梯度)算子,常用的包括普通一阶差分,Robert算子(交叉差分),Sobel算子等等,是基于寻找梯度强度.拉普拉斯算子(二阶差分)是基于过零点检测.通过计算梯度,设置阀值,得到边缘图像. Canny边缘检测算子是一种多级检测算法.1986年由J

  • 使用OpenCV-python3实现滑动条更新图像的Canny边缘检测功能

    import cv2 from matplotlib import pyplot as plt import numpy as np img= cv2.imread('39.jpg')#加载图片 cv2.namedWindow('Canny edge detect')#设置窗口,cv2.WINDOW_NORMAL表示窗口大小可自动调节 cv2.namedWindow('Original Image',cv2.WINDOW_NORMAL) cv2.namedWindow('Canny edgeIm

  • python实现canny边缘检测

    canny边缘检测原理 canny边缘检测共有5部分组成,下边我会分别来介绍. 1 高斯模糊(略) 2 计算梯度幅值和方向. 可选用的模板:soble算子.Prewitt算子.Roberts模板等等; 一般采用soble算子,OpenCV也是如此,利用soble水平和垂直算子与输入图像卷积计算dx.dy: 进一步可以得到图像梯度的幅值: 为了简化计算,幅值也可以作如下近似: 角度为: 如下图表示了中心点的梯度向量.方位角以及边缘方向(任一点的边缘与梯度向量正交) : θ = θm = arcta

  • python+opencv轮廓检测代码解析

    首先大家可以对OpenCV有个初步的了解,可以参考:简单了解OpenCV 轮廓(Contours),指的是有相同颜色或者密度,连接所有连续点的一条曲线.检测轮廓的工作对形状分析和物体检测与识别都非常有用. 在轮廓检测之前,首先要对图片进行二值化或者Canny边缘检测.在OpenCV中,寻找的物体是白色的,而背景必须是黑色的,因此图片预处理时必须保证这一点. import cv2 #读入图片 img = cv2.imread("1.png") # 必须先转化成灰度图 gray = cv2

  • Python使用Opencv实现边缘检测以及轮廓检测的实现

    边缘检测 Canny边缘检测器是一种被广泛使用的算法,并被认为是边缘检测最优的算法,该方法使用了比高斯差分算法更复杂的技巧,如多向灰度梯度和滞后阈值化. Canny边缘检测器算法基本步骤: 平滑图像:通过使用合适的模糊半径执行高斯模糊来减少图像内的噪声. 计算图像的梯度:这里计算图像的梯度,并将梯度分类为垂直.水平和斜对角.这一步的输出用于在下一步中计算真正的边缘. 非最大值抑制:利用上一步计算出来的梯度方向,检测某一像素在梯度的正方向和负方向上是否是局部最大值,如果是,则抑制该像素(像素不属于

  • Python通过OpenCV的findContours获取轮廓并切割实例

    1 获取轮廓 OpenCV2获取轮廓主要是用cv2.findContours import numpy as np import cv2 im = cv2.imread('test.jpg') imgray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) ret,thresh = cv2.threshold(imgray,127,255,0) image, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_T

  • python中opencv Canny边缘检测

    目录 Canny边缘检测 Canny边缘检测基础 高斯滤波去除图像噪声 计算梯度 非极大值抑制 应用双阈值确定边缘 Canny函数及使用 Canny边缘检测 Canny边缘检测是一种使用多级边缘检测算法检测边缘的方法. OpenCV提供了函数cv2.Canny()实现Canny边缘检测. Canny边缘检测基础 Canny边缘检测分为如下几个步骤: 去噪.噪声会影响边缘检测的准确性,因此首先要将噪声过滤掉. 计算梯度的幅度与方向 非极大值抑制,即适当地让边缘“变瘦” 确定边缘.使用双阈值算法确定

  • python利用opencv调用摄像头实现目标检测

    目录 使用到的库 实现思路 实现代码 2020/4/26更新:FPS计算 FPS记录的原理 FPS实现代码 使用到的库 好多人都想了解一下如何对摄像头进行调用,然后进行目标检测,于是我做了这个小BLOG. opencv-python==4.1.2.30 Pillow==6.2.1 numpy==1.17.4 这些都是通用的库,版本不同问题应该也不大. 实现思路 利用opencv调用摄像头,读取每一帧传入目标检测网络检测,将检测结果呈现. 由于本文所用的检测格式为RGB格式,CV2读取的时候会使用

  • Python基于OpenCV实现视频的人脸检测

    本文实例为大家分享了基于OpenCV实现视频的人脸检测具体代码,供大家参考,具体内容如下 前提条件 1.摄像头 2.已安装Python和OpenCV3 代码 import cv2 import sys import logging as log import datetime as dt from time import sleep cascPath = "haarcascade_frontalface_default.xml" faceCascade = cv2.CascadeCla

  • Python基于opencv的简单图像轮廓形状识别(全网最简单最少代码)

    可以直接跳到最后整体代码看一看是不是很少的代码!!!! 思路: 1. 数据的整合 2. 图片的灰度转化 3. 图片的二值转化 4. 图片的轮廓识别 5. 得到图片的顶点数 6. 依据顶点数判断图像形状 一.原数据的展示 图片文件共36个文件夹,每个文件夹有100张图片,共3600张图片. 每一个文件夹里都有形同此类的图形 二.数据的整合 对于多个文件夹,分析起来很不方便,所有决定将其都放在一个文件夹下进行分析,在python中具体实现如下: 本次需要的包 import cv2 import os

  • OpenCV实现图像轮廓检测以及外接矩形

    前两篇博文分别介绍了图像的边缘检测和轮廓检测,本文接着介绍图像的轮廓检测和轮廓外接矩形: 一.代码部分: // extract_contours.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include<cv.h> #include<highgui.h> using namespace cv; using namespace std; int _tmain(int argc, _TCHAR* argv[]) { /

  • opencv python 图像轮廓/检测轮廓/绘制轮廓的方法

    图像的轮廓检测,如计算多边形外界.形状毕竟.计算感兴趣区域等. Contours : Getting Started 轮廓 简单地解释为连接所有连续点(沿着边界)的曲线,具有相同的颜色或强度. 轮廓是形状分析和物体检测和识别的有用工具 NOTE 为获得更好的准确性,请使用二值图,在找到轮廓之前,应用阈值法或canny边缘检测 从OpenCV 3.2开始,findContours()不再修改源图像,而是将修改后的图像作为三个返回参数中的第一个返回 在OpenCV中,查找轮廓是从黑色背景中查找白色对

随机推荐