详解pandas.DataFrame中删除包涵特定字符串所在的行

你在使用pandas处理DataFrame中是否遇到过如下这类问题?我们需要删除某一列所有元素中含有固定字符元素所在的行,比如下面的例子:

以上所述是小编给大家介绍的pandas.DataFrame中删除包涵特定字符串所在的行详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!

(0)

相关推荐

  • pandas dataframe添加表格框线输出的方法

    将dataframe添加到texttable里面,实现格式化输出. data=[{"name":"Amay","age":20,"result":80}, {"name":"Tom","age":32,"result":90}] df=pd.DataFrame(data,columns=['name','age','result']) print(

  • Pandas过滤dataframe中包含特定字符串的数据方法

    假如有一列全是字符串的dataframe,希望提取包含特定字符的所有数据,该如何提取呢? 因为之前尝试使用filter,发现行不通,最终找到这个行得通的方法. 举例说明: 我希望提取所有包含'Mr.'的人名 1.首先将他们进行字符串化,并得到其对应的布尔值: >>> bool = df.str.contains('Mr\.') #不要忘记正则表达式的写法,'.'在里面要用'\.'表示 >>> print('bool : \n', bool) 2.通过dataframe的

  • Python pandas.DataFrame调整列顺序及修改index名的方法

    1. 从字典创建DataFrame >>> import pandas >>> dict_a = {'user_id':['webbang','webbang','webbang'],'book_id':['3713327','4074636','26873486'],'rating':['4','4','4'],'mark_date':['2017-03-07','2017-03-07','2017-03-07']} >>> df = pandas.

  • pandas实现to_sql将DataFrame保存到数据库中

    目的 在数据分析时,我们有中间结果,或者最终的结果,需要保存到数据库中:或者我们有一个中间的结果,如果放到数据库中通过sql操作会更加的直观,处理后再将结果读取到DataFrame中.这两个场景,就需要用到DataFrame的to_sql操作. 具体的操作 连接数据库代码 import pandas as pd from sqlalchemy import create_engine # default engine = create_engine('mysql+pymysql://ledao:

  • Pandas DataFrame数据的更改、插入新增的列和行的方法

    一.更改DataFrame的某些值 1.更改DataFrame中的数据,原理是将这部分数据提取出来,重新赋值为新的数据. 2.需要注意的是,数据更改直接针对DataFrame原数据更改,操作无法撤销,如果做出更改,需要对更改条件做确认或对数据进行备份. 代码: import pandas as pd df1 = pd.DataFrame([['Snow','M',22],['Tyrion','M',32],['Sansa','F',18],['Arya','F',14]], columns=['

  • 对pandas通过索引提取dataframe的行方法详解

    一.假设有这样一个原始dataframe 二.提取索引 (已经做了一些操作将Age为NaN的行提取出来并合并为一个dataframe,这里提取的是该dataframe的索引,道理和操作是相似的,提取的代码没有贴上去是为了不显得太繁杂让读者看着繁琐) >>> index = unknown_age_Mr.index.tolist() #记得转换为list格式 三.提取索引对应的原始dataframe的行 使用iloc函数将数据块提取出 >>> age_df.iloc[in

  • Python Pandas批量读取csv文件到dataframe的方法

    PYTHON Pandas批量读取csv文件到DATAFRAME 首先使用glob.glob获得文件路径.然后定义一个列表,读取文件后再使用concat合并读取到的数据. #读取数据 import pandas as pd import numpy as np import glob,os path=r'e:\tj\month\fx1806' file=glob.glob(os.path.join(path, "zq*.xls")) print(file) dl= [] for f i

  • pandas.DataFrame删除/选取含有特定数值的行或列实例

    1.删除/选取某列含有特殊数值的行 import pandas as pd import numpy as np a=np.array([[1,2,3],[4,5,6],[7,8,9]]) df1=pd.DataFrame(a,index=['row0','row1','row2'],columns=list('ABC')) print(df1) df2=df1.copy() #删除/选取某列含有特定数值的行 #df1=df1[df1['A'].isin([1])] #df1[df1['A'].

  • 详解pandas.DataFrame中删除包涵特定字符串所在的行

    你在使用pandas处理DataFrame中是否遇到过如下这类问题?我们需要删除某一列所有元素中含有固定字符元素所在的行,比如下面的例子: 以上所述是小编给大家介绍的pandas.DataFrame中删除包涵特定字符串所在的行详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的.在此也非常感谢大家对我们网站的支持!

  • 详解pandas.DataFrame.plot() 画图函数

    首先看官网的DataFrame.plot( )函数 DataFrame.plot(x=None, y=None, kind='line', ax=None, subplots=False, sharex=None, sharey=False, layout=None,figsize=None, use_index=True, title=None, grid=None, legend=True, style=None, logx=False, logy=False, loglog=False,

  • pandas.dataframe中根据条件获取元素所在的位置方法(索引)

    在dataframe中根据一定的条件,得到符合要求的某行元素所在的位置. 代码如下所示: df = pd.DataFrame({'BoolCol': [1, 2, 3, 3, 4],'attr': [22, 33, 22, 44, 66]}, index=[10,20,30,40,50]) print(df) a = df[(df.BoolCol==3)&(df.attr==22)].index.tolist() print(a) df如下所示,以上通过选取"BoolCol"取

  • 详解pandas DataFrame的查询方法(loc,iloc,at,iat,ix的用法和区别)

    在操作DataFrame时,肯定会经常用到loc,iloc,at等函数,各个函数看起来差不多,但是还是有很多区别的,我们一起来看下吧. 首先,还是列出一个我们用的DataFrame,注意index一列,如下: 接下来,介绍下各个函数的用法: 1.loc函数 愿意看官方文档的,请戳这里,这里一般最权威. loc函数是基于"标签"选择数据的,但是也可以接受一个boolean的array,对于每个用法,我们从参数方面来一一举例: 1.1 单个label 接受一个"标签"(

  • pandas dataframe 中的explode函数用法详解

    在使用 pandas 进行数据分析的过程中,我们常常会遇到将一行数据展开成多行的需求,多么希望能有一个类似于 hive sql 中的 explode 函数. 这个函数如下: Code # !/usr/bin/env python # -*- coding:utf-8 -*- # create on 18/4/13 import pandas as pd def dataframe_explode(dataframe, fieldname): temp_fieldname = fieldname

  • 详解pandas中利用DataFrame对象的.loc[]、.iloc[]方法抽取数据

    pandas的DataFrame对象,本质上是二维矩阵,跟常规二维矩阵的差别在于前者额外指定了每一行和每一列的名称.这样内部数据抽取既可以用"行列名称(对应.loc[]方法)",也可以用"矩阵下标(对应.iloc[]方法)"两种方式进行. 下面具体说明: (以下程序均在Jupyter notebook中进行,部分语句的print()函数省略) 首先生成一个DataFrame对象: import pandas as pd score = [[34,67,87],[68

  • 详解pandas中iloc, loc和ix的区别和联系

    Pandas库十分强大,但是对于切片操作iloc, loc和ix,很多人对此十分迷惑,因此本篇博客利用例子来说明这3者之一的区别和联系,尤其是iloc和loc. 对于ix,由于其操作有些复杂,我在另外一篇博客专门详细介绍ix. 首先,介绍这三种方法的概述: loc gets rows (or columns) with particular labels from the index. loc从索引中获取具有特定标签的行(或列).这里的关键是:标签.标签的理解就是name名字. iloc get

  • 详解pandas中缺失数据处理的函数

    目录 一.缺失值类型 1.np.nan 2.None 3.NA标量 二.缺失值判断 1.对整个dataframe判断缺失 2.对某个列判断缺失 三.缺失值统计 1.列缺失 2.行缺失 3.缺失率 四.缺失值筛选 五.缺失值填充 六.缺失值删除 1.全部直接删除 2.行缺失删除 3.列缺失删除 4.按缺失率删除 七.缺失值参与计算 1.加法 2.累加 3.计数 4.聚合分组 五.源码 今天分享一篇pandas缺失值处理的操作指南! 一.缺失值类型 在pandas中,缺失数据显示为NaN.缺失值有3

  • 详解Pandas中stack()和unstack()的使用技巧

    目录 介绍 1.单层 2.多层次:简单案例 3. 多层次:缺失值 4. 多层次:规定要堆叠的层次 5. 多层次:删除缺失值 6. unstack: 简单案例 7. unstack:更多用法 结论 介绍 Pandas 提供了各种用于重塑 DataFrame 的内置方法.其中,stack() 和 unstack() 是最流行的 2 种重组列和行的方法: stack():从列到行堆叠 unstack():从行到列取消堆叠 stack() 和 unstack() 似乎使用起来相当简单,但你仍然应该知道一

  • 详解Pandas中GroupBy对象的使用

    目录 使用 Groupby 三个步骤 将原始对象拆分为组 按组应用函数 Aggregation Transformation Filtration 整合结果 总结 今天,我们将探讨如何在 Python 的 Pandas 库中创建 GroupBy 对象以及该对象的工作原理.我们将详细了解分组过程的每个步骤,可以将哪些方法应用于 GroupBy 对象上,以及我们可以从中提取哪些有用信息 不要再观望了,一起学起来吧 使用 Groupby 三个步骤 首先我们要知道,任何 groupby 过程都涉及以下

随机推荐