基于Python实现图像文字识别OCR工具

目录
  • 引言
  • 功能列表
  • OCR部分
  • 界面部分
  • 软件代码
  • 参考链接

引言

最近在技术交流群里聊到一个关于图像文字识别的需求,在工作、生活中常常会用到,比如票据、漫画、扫描件、照片的文本提取。

博主基于 PyQt + PaddleOCR 写了一个桌面端的OCR工具,用于快速实现图片中文本区域自动检测+文本自动识别。

识别效果如下图所示:

所有框选区域为OCR算法自动检测,右侧列表有每个框对应的文字内容;

点击右侧“识别结果”中的文本记录,然后点击“复制到剪贴板”即可复制该文本内容。

功能列表

  • 文本区域检测+文字识别
  • 文本区域可视化
  • 文字内容列表
  • 图像、文件夹加载
  • 图像滚轮缩放查看
  • 绘制区域、编辑区域
  • 复制文本识别结果

OCR部分

图像文字检测+文字识别算法,主要借助paddleocr实现。

创建或者选择一个虚拟环境,安装需要用到的第三方库。

conda create -n ocr
conda activate ocr

① 安装框架

如果你没有NVIDIA GPU,或GPU不支持CUDA,可以安装CPU版本:

# CPU版本
pip install paddlepaddle==2.1.0 -i https://mirror.baidu.com/pypi/simple

如果你的GPU安装过CUDA9或CUDA10,cuDNN 7.6+,可以选择下面这个GPU版本:

# GPU版本
python3 -m pip install paddlepaddle-gpu==2.1.0 -i https://mirror.baidu.com/pypi/simple

② 安装 PaddleOCR

安装paddleocr:

pip install "paddleocr>=2.0.1" # 推荐使用2.0.1+版本

版面分析,需要安装 Layout-Parser:

pip3 install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl

③ 测试安装是否成功

安装完成后,测试一张图片--image_dir ./imgs/11.jpg,采用中英文检测+方向分类器+识别全流程:

paddleocr --image_dir ./imgs/11.jpg --use_angle_cls true --use_gpu false

输出一个list:

④ 在python中调用

from paddleocr import PaddleOCR, draw_ocr

# Paddleocr目前支持的多语言语种可以通过修改lang参数进行切换
# 例如`ch`, `en`, `fr`, `german`, `korean`, `japan`
ocr = PaddleOCR(use_angle_cls=True, lang="ch")  # need to run only once to download and load model into memory
img_path = './imgs/11.jpg'
result = ocr.ocr(img_path, cls=True)
for line in result:
    print(line)

输出结果是一个list,每个item包含了文本框,文字和识别置信度:

[[[24.0, 36.0], [304.0, 34.0], [304.0, 72.0], [24.0, 74.0]], [‘纯臻营养护发素', 0.964739]]

[[[24.0, 80.0], [172.0, 80.0], [172.0, 104.0], [24.0, 104.0]], [‘产品信息/参数', 0.98069626]]

[[[24.0, 109.0], [333.0, 109.0], [333.0, 136.0], [24.0, 136.0]], ['(45元/每公斤,100公斤起订)', 0.9676722]]

界面部分

界面部分基于 pyqt5实现。

pyqt GUI程序开发入门和环境配置,详见这篇博客。

主要步骤:

1. 界面布局设计

在QtDesigner中拖拽控件,完成程序界面布局,并保存*.ui文件。

2. 利用 pyuic 自动生成界面代码

在 pycharm 的项目文件结构中找到*.ui文件,右键——External Tools——pyuic,会在ui文件同级目录下自动生成界面 ui 的 python 代码。

3. 编写界面业务类

业务类 MainWindow 实现程序逻辑和算法功能,与前面第2步生成的ui实现解耦,避免每次修改ui文件会影响业务代码。ui界面上的控件可以通过self._ui.xxxObjectName 访问。

class MainWindow(QMainWindow):
	FIT_WINDOW, FIT_WIDTH, MANUAL_ZOOM = 0, 1, 2

	def __init__(self):
		super().__init__()  # 调用父类构造函数,创建QWidget窗体
		self._ui = Ui_MainWindow()  # 创建ui对象
		self._ui.setupUi(self)  # 构造ui
		self.setWindowTitle(__appname__)

		# 加载默认配置
		config = get_config()
		self._config = config	   

		# 单选按钮组
        self.checkBtnGroup = QButtonGroup(self)
        self.checkBtnGroup.addButton(self._ui.checkBox_ocr)
        self.checkBtnGroup.addButton(self._ui.checkBox_det)
        self.checkBtnGroup.addButton(self._ui.checkBox_recog)
        self.checkBtnGroup.addButton(self._ui.checkBox_layoutparser)
        self.checkBtnGroup.setExclusive(True)

4. 实现界面业务逻辑

对主界面上的按钮、列表、绘图控件进行信号槽连接。自定义的槽函数不用专门声明,如果是自定义的信号,需要在类__init__()前加上 yourSignal= pyqtSignal(args)。

这里以按钮响应函数、列表响应函数为例。按钮点击的信号是 clicked,listWidget列表切换选择的信号是 itemSelectionChanged 。

# 按钮响应函数
self._ui.btnOpenImg.clicked.connect(self.openFile)
self._ui.btnOpenDir.clicked.connect(self.openDirDialog)
self._ui.btnNext.clicked.connect(self.openNextImg)
self._ui.btnPrev.clicked.connect(self.openPrevImg)
self._ui.btnStartProcess.clicked.connect(self.startProcess)
self._ui.btnCopyAll.clicked.connect(self.copyToClipboard)
self._ui.btnSaveAll.clicked.connect(self.saveToFile)
self._ui.listWidgetResults.itemSelectionChanged.connect(self.onItemResultClicked)

5. 运行看看效果

运行 python main.py 即可启动GUI程序。

打开图片→选择语言模型ch(中文)→选择文本检测+识别→点击开始,检测完的文本区域会自动画框,并在右侧识别结果——文本Tab页的列表中显示。

所有检测出文本的区域列表,在识别结果——区域Tab页:

软件代码

由于时间有限,软件细节功能还需进一步完善。

代码已开源到 gitlab 上,欢迎感兴趣的朋友提出建议,一起修改完善。

https://gitee.com/signal926/ocr-gui-demo

参考链接

画框、区域列表:labelme

icons:material-design-icons

https://gitee.com/paddlepaddle/PaddleOCR/blob/release/2.3/doc/doc_ch/quickstart.md

以上就是基于Python实现图像文字识别OCR工具的详细内容,更多关于Python图像文字识别的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python实战之实现截图识别文字

    目录 前言 一.获取百度智能云token 二.百度借口调用 三.搭建窗口化的程序以便于使用 四.实现截图的自动保存 五.将识别到的文字输出显示在窗口文本框中并将文字发送到剪切板 六.提取识别后文字中的中(英)文 前言 系统:win10 Python版本:python3.8.6 pycharm版本:pycharm 2021.1.2(Professional Edition) 完整代码下载:Baidu_Ocr.py-Python 一.获取百度智能云token 百度智能云登录后找到人工智能界面下的文字

  • python实现图像识别的示例代码

    一.安装库 首先我们需要安装PIL和pytesseract库. PIL:(Python Imaging Library)是Python平台上的图像处理标准库,功能非常强大. pytesseract:图像识别库. 我这里使用的是python3.6,PIL不支持python3所以使用如下命令 pip install pytesseract pip install pillow 如果是python2,则在命令行执行如下命令: pip install pytesseract pip install PI

  • 用Python进行简单图像识别(验证码)

    这是一个最简单的图像识别,将图片加载后直接利用Python的一个识别引擎进行识别 将图片中的数字通过 pytesseract.image_to_string(image)识别后将结果存入到本地的txt文件中 #-*-encoding:utf-8-*- import pytesseract from PIL import Image class GetImageDate(object): def m(self): image = Image.open(u"C:\\a.png") text

  • Python图像处理之识别图像中的文字(实例讲解)

    ①安装PIL:pip install Pillow(之前的博客中有写过) ②安装pytesser3:pip install pytesser3 ③安装pytesseract:pip install pytesseract ④安装autopy3: 先安装wheel:pip install wheel 下载autopy3-0.51.1-cp36-cp36m-win_amd64.whl[点击打开链接] 执行命令:pip install E:\360安全浏览器下载\autopy3-0.51.1-cp36

  • Python 图片文字识别的实现之PaddleOCR

    目录 项目使用 项目结构 环境部署 1.安装Anaconda,构造虚拟环境 2.依赖包下载 测试代码 参数补充 总结 前言 什么是OCR? 光学字符识别(Optical Character Recognition, OCR),是指对文本资料的图像文件进行分析识别处理,获取文字及版面信息的过程.简而言之,检测图像中的文本资料,并且识别出文本的内容. 那么有哪些应用场景呢? 其实我们日常生活中处处都有ocr的影子,比如在疫情期间身份证识别录入信息.车辆车牌号识别.自动驾驶等.我们的生活中,机器学习已

  • python识别图像并提取文字的实现方法

    前言 python图像识别一般基础到的就是tesseract了,在爬虫中处理验证码广泛使用. 安装 安装教程网上大都差不多,Windows下确实比较麻烦,涉及到各种路径.环境变量甚至与linux不同的路径分隔符,所以这里的安装是基于Centos7. 1. 依赖安装 yum install -y automake autoconf libtool gcc gcc-c++ 2. 安装leptonica Leptonica主要用于图像处理和图像分析 原则上所有的库文件都是可以直接用yum安装的,如果想

  • Python图像处理之图片文字识别功能(OCR)

    OCR与Tesseract介绍 将图片翻译成文字一般被称为光学文字识别(Optical Character Recognition,OCR).可以实现OCR 的底层库并不多,目前很多库都是使用共同的几个底层OCR 库,或者是在上面进行定制. Tesseract 是一个OCR 库,目前由Google 赞助(Google 也是一家以OCR 和机器学习技术闻名于世的公司).Tesseract 是目前公认最优秀.最精确的开源OCR 系统. 除 了极高的精确度,Tesseract 也具有很高的灵活性.它可

  • 基于Python实现图像文字识别OCR工具

    目录 引言 功能列表 OCR部分 界面部分 软件代码 参考链接 引言 最近在技术交流群里聊到一个关于图像文字识别的需求,在工作.生活中常常会用到,比如票据.漫画.扫描件.照片的文本提取. 博主基于 PyQt + PaddleOCR 写了一个桌面端的OCR工具,用于快速实现图片中文本区域自动检测+文本自动识别. 识别效果如下图所示: 所有框选区域为OCR算法自动检测,右侧列表有每个框对应的文字内容: 点击右侧"识别结果"中的文本记录,然后点击"复制到剪贴板"即可复制该

  • 如何基于Python代码实现高精度免费OCR工具

    近期Github开源了一款基于Python开发.名为Textshot的截图工具,刚开源不到半个月已经500+Star. 这两天抽空看了一下Textshot的源码,的确是一个值得介绍的项目. 相对于大多数OCR工具复杂工程.差强人意的效果,Textshot具有明显的优势, 项目简单 技术点丰富 项目简单 Textshot整个项目只有1个Python文件.139行代码,没有复杂的第三方库应用,也不涉及过多后端算法的调用. 技术点丰富 Textshot这个项目虽然只有短短的139行代码,但是,却涉及P

  • python调用文字识别OCR轻松搞定验证码

    今天带你们去研究一个有趣的东西,文字识别OCR.不知道你们有没有想要识别图片,然后读出文字的功能.例如验证码,如果需要自动填写的话就需要这功能.还有很多种情况需要这功能的. 我们可以登录百度云,然后看看里面的接口文档.接口功能还是有比较丰富的应用场景的. # encoding:utf-8 import requests import base64 ''' 通用文字识别 ''' request_url = "https://aip.baidubce.com/rest/2.0/ocr/v1/gene

  • 基于Python制作图像完美超分处理工具

    目录 前言 安装 使用 图片超分 视频超分 项目说明 代码说明 总结 前言 很久没更新这个专栏了,最近比较忙.前段时间看到了这个模型觉着很有意思,弄下来自己玩了玩,但是没时间写文章,一直搁置到现在. 废话不多说,先上Github地址: RealBasicVSR地址 从给出的效果来看,还是很不错的,左侧是超分后的画面,右边是原画质,得到明显提升.下面我说一下我的安装过程,还有一些使用中的踩坑,让大家去测试项目的时候可以提前规避. 安装 项目拉下来之后,我们先打开README,看看说明. 安装的步骤

  • 如何使用Python进行PDF图片识别OCR

    使用场景 使用图片识别可以快速提取图片中的信息,方便高效. Python并不能直接对PDF进行识别,所以如果是识别PDF的话,需要先将PDF转化为图片,然后再进行识别. 必备工具 Python 可以安装3.7及以上版本 tesseract-ocr 下载地址: https://github.com/UB-Mannheim/tesseract/wiki 使用最新版本即可 需要用到的库 pip install pillow pip install opencv-python pip install f

  • Python实现PDF文字识别提取并写入CSV文件

    目录 1.前言 2.需求描述 3.开始动手动脑 3.1安装相关第三方包 3.2导入需要用到的第三方库 3.3读取pdf文件,并识别内容 3.4对识别的数据进行处理,写入csv文件 总结 1. 前言 扫描件一直受大众青睐,任何纸质资料在扫描之后进行存档,想使用时手机就能打开,省心省力.但是扫描件的优点也恰恰造成了它的一个缺点,因为是通过电子设备扫描,所以出来的是图像,如果想要处理文件上的内容,直接操作是无法实现的. 那要是想要引用其中的内容怎么办呢?别担心,Python帮你解决问题. 2. 需求描

  • 基于Python实现图像的傅里叶变换

    目录 前言 (1)基本概念 (2)读取图像信息 1. 傅里叶变换 (1)基本概念 (2)numpy实现 (3)OpevCV实现  2. 傅里叶逆变换 (1)基本概念 (2)代码实现 前言 首先是本文总体代码,改一下图像的读取路径就可以运行了,但我还是建议大家先看后面的步骤一行行敲代码,这样效果更好: """ Author:XiaoMa date:2021/11/7 """ import cv2 import matplotlib.pyplot a

  • 基于Python实现傻瓜式GIF制作工具

    目录 导语​ ​一.简单的GIF制作 1)准备中 2)小简介 3)代码演示 二.升级imageio的GIF制作 1)准备中 2)小简介 3)代码演示 三.总效果展示 导语​ ​嘿!大家好,我是木木子!今天给大家带来一个好玩儿的Python小程序,希望大家喜欢,记得点点关注啦~ 有没有什么内容形式,比小视频更小,比普通图片更丰富???? 有! GIF动态图就是其中一种形式,而且,必不可少. GIF动态图应该是早已充斥了互联网,被大家玩得不亦乐乎,大伙早就不能接受文章中的纯文字或 静态图片,这些早已

  • 基于Python编写一个图片识别系统

    目录 项目介绍 环境准备 程序原理 实现脚本 测试效果 总结 项目介绍 本项目将使用python3去识别图片是否为色情图片,会使用到PIL这个图像处理库,并且编写算法来划分图像的皮肤区域 介绍一下PIL: PIL(Python Image Library)是一种免费的图像处理工具包,这个软件包提供了基本的图像处理功能,如:改变图像大小,旋转图像,图像格式转化,色场空间转换(这个我不太懂),图像增强(就是改善清晰度,突出图像有用信息),直方图处理,插值(利用已知邻近像素点的灰度值来产生未知像素点的

  • 详解基于python的图像Gabor变换及特征提取

    1.前言 在深度学习出来之前,图像识别领域北有"Gabor帮主",南有"SIFT慕容小哥".目前,深度学习技术可以利用CNN网络和大数据样本搞事情,从而取替"Gabor帮主"和"SIFT慕容小哥"的江湖地位.但,在没有大数据和算力支撑的"乡村小镇"地带,或是对付"刁民小辈","Gabor帮主"可以大显身手,具有不可撼动的地位.IT武林中,有基于C++和OpenCV,或

随机推荐