OpenCV提取图像中圆线上的数据具体流程

目录
  • 需求说明
  • 具体流程
  • 功能函数
  • C++测试代码
  • 测试效果
  • 总结

需求说明

在对图像进行处理时,经常会有这类需求:客户想要提取出图像中某条直线、圆线或者ROI区域内的感兴趣数据,进行重点关注。该需求在图像检测领域尤其常见。ROI区域一般搭配Rect即可完成提取,直线和圆线数据的提取没有现成的函数,需要自行实现。

直线的提取见:

OpenCV获取图像中直线上的数据具体流程

而圆线的提取则是本文要将的内容,对圆线而言,将线上某点作为起点,沿顺时针或逆时针方向依次提取感兴趣数据,可放置在容器中。那么如何快速提取呢?本文提供了一种比较简单的思路,应用窗口模板,在窗口中快速找到下一可前进点的位置,步进然后再找下个点,形成路径追踪,进而实现整圈圆线数据的提取。

具体流程

1)初始化。设置路径追踪窗口尺寸size为3,创建path作为行进路径,p点作为起点,c用来存放目标数据点。

cv::Mat c;
int size = 3;
cv::Mat path = mask.clone();
Point p = Point(center.x + radius, center.y);

2)将起点放置在c中,将path中的起点值置0,表示该点已经走过。

c.push_back(src.at<uchar>(p.y, p.x));
path.at<uchar>(p.y, p.x) = 0;

3)用WinDataNum函数判断当前点的窗口内有几个可前进点,若无则说明路径封死或者完成路径,wn值表示可前进点的个数。

int wn = WinDataNum(path, p, size);

4)窗口内遍历,查看是否有可前进路径,若找到,则将当前点信息刷新为此点,并将标记符find设为true,find的意义是快速中断遍历,用来提速。

int t = size / 2;
bool find = false;
for (int i = p.y - t; i <= p.y + t; ++i)
{
	uchar *g = path.ptr<uchar>(i);
	for (int j = p.x - t; j <= p.x + t; ++j)
	{
		if (g[j] == 255)
		{
			p.x = j;
			p.y = i;
			find = true;
			break;
		}
	}
	if (find)
		break;
}

5)若找到了点,即find为true,则将该点的数据存放在c中,path中置0,并以该点为中心搜索窗口内可前进路径。

if (find)
{
	c.push_back(src.at<uchar>(p.y, p.x));
	path.at<uchar>(p.y, p.x) = 0;
	wn = WinDataNum(path, p, size);
}
else
	break;

6)若wn为0了,则说明路径封死或者完成路径了,跳出循环,函数执行完毕。 

while (wn)
{
	int t = size / 2;
	bool find = false;
	for (int i = p.y - t; i <= p.y + t; ++i)
	{
		uchar *g = path.ptr<uchar>(i);
		for (int j = p.x - t; j <= p.x + t; ++j)
		{
			if (g[j] == 255)
			{
				p.x = j;
				p.y = i;
				find = true;
				break;
			}
		}
		if (find)
			break;
	}
	if (find)
	{
		c.push_back(src.at<uchar>(p.y, p.x));
		path.at<uchar>(p.y, p.x) = 0;
		wn = WinDataNum(path, p, size);
	}
	else
		break;

}

功能函数

// 获取圆圈上的数据,逆时针存储,起点在中心同行最右侧数据
cv::Mat getCircleData(cv::Mat src, cv::Mat mask, cv::Point center, int radius)
{
	cv::Mat c;
	int size = 3;
	cv::Mat path = mask.clone();
	Point p = Point(center.x + radius, center.y);
	c.push_back(src.at<uchar>(p.y, p.x));
	path.at<uchar>(p.y, p.x) = 0;
	int wn = WinDataNum(path, p, size);
	while (wn)
	{
		int t = size / 2;
		bool find = false;
		for (int i = p.y - t; i <= p.y + t; ++i)
		{
			uchar *g = path.ptr<uchar>(i);
			for (int j = p.x - t; j <= p.x + t; ++j)
			{
				if (g[j] == 255)
				{
					p.x = j;
					p.y = i;
					find = true;
					break;
				}
			}
			if (find)
				break;
		}
		if (find)
		{
			c.push_back(src.at<uchar>(p.y, p.x));
			path.at<uchar>(p.y, p.x) = 0;
			wn = WinDataNum(path, p, size);
		}
		else
			break;

	}
	return c;
}
// 获取窗口内的有效数据个数
int WinDataNum(cv::Mat path, cv::Point p, int size)
{
	int number = 0;
	int t = size / 2;
	for (int i = p.y - t; i <= p.y + t; ++i)
	{
		uchar *g = path.ptr<uchar>(i);
		for (int j = p.x - t; j <= p.x + t; ++j)
		{
			if (g[j] == 255)
				number++;
		}
	}
	return number;
}

C++测试代码

#include <iostream>
#include <opencv2/opencv.hpp>
#include <string>

using namespace std;
using namespace cv;

cv::Mat getCircleData(cv::Mat src, cv::Mat mask, cv::Point center, int radius);
int WinDataNum(cv::Mat path, cv::Point p, int size);

int main()
{
	cv::Mat src = imread("test.jpg", 0);
	cv::Mat mask = cv::Mat::zeros(src.size(), CV_8UC1);
	cv::Point center = cv::Point(src.cols / 2, src.rows / 2);
	int radius = min(src.cols, src.rows) / 2 - 10;
	circle(mask, center, radius, Scalar(255), 1, 8);
	cv::Mat c = getCircleData(src, mask, center, radius);
	src.setTo(0, mask == 0);
	imshow("src", src);
	imshow("mask", mask);
	waitKey(0);

	return 0;
}

// 获取圆圈上的数据,逆时针存储,起点在中心同行最右侧数据
cv::Mat getCircleData(cv::Mat src, cv::Mat mask, cv::Point center, int radius)
{
	cv::Mat c;
	int size = 3;
	cv::Mat path = mask.clone();
	Point p = Point(center.x + radius, center.y);
	c.push_back(src.at<uchar>(p.y, p.x));
	path.at<uchar>(p.y, p.x) = 0;
	int wn = WinDataNum(path, p, size);
	while (wn)
	{
		int t = size / 2;
		bool find = false;
		for (int i = p.y - t; i <= p.y + t; ++i)
		{
			uchar *g = path.ptr<uchar>(i);
			for (int j = p.x - t; j <= p.x + t; ++j)
			{
				if (g[j] == 255)
				{
					p.x = j;
					p.y = i;
					find = true;
					break;
				}
			}
			if (find)
				break;
		}
		if (find)
		{
			c.push_back(src.at<uchar>(p.y, p.x));
			path.at<uchar>(p.y, p.x) = 0;
			wn = WinDataNum(path, p, size);
		}
		else
			break;

	}
	return c;
}

// 获取窗口内的有效数据个数
int WinDataNum(cv::Mat path, cv::Point p, int size)
{
	int number = 0;
	int t = size / 2;
	for (int i = p.y - t; i <= p.y + t; ++i)
	{
		uchar *g = path.ptr<uchar>(i);
		for (int j = p.x - t; j <= p.x + t; ++j)
		{
			if (g[j] == 255)
				number++;
		}
	}
	return number;
}

测试效果

图1 原图

图2 掩膜内图像

如图1图2所示,掩膜内的图像数据就是我们要提取的目标。

图3 放大后数据搜索路径

图3放大后可以看出,起点是230,之后的数据是230、231、236、232、234、146等等,再看c容器中的数据。

图4 容器内数据

对比完开头,再看结尾,如图3所示,是234、234、231、234、234,然后就是起点230,查看容器。

图5 容器内数据

这样有的小伙伴可能觉得中间会不会有数据错误呢,很简单,打开VS复制代码后,搭配ImageWatch插件,debug调试打断点观察path矩阵,看看它的255数据是不是按预想的路径消失,如果是则说明扔的数据也没有问题。

总结

本文提供的只是一个简单思路,有一定局限性。比如该方法在圆线宽为1时效果最佳,若线宽大了就不能用窗口简单判断了;另外,起点在右侧时是逆时针获取数据,起点在左侧时是顺时针获取数据,如果想统一标准的话,最好加上起点的位置判断,然后决定是否将c的数据翻转。至于运行速度方面,3000*3000的图像矩阵中运行基本为0ms,毕竟只是提取了一条圆线而已。

到此这篇关于OpenCV提取图像中圆线上的数据具体流程的文章就介绍到这了,更多相关OpenCV提取图像数据内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 利用OpenCV中对图像数据进行64F和8U转换的方式

    在OpenCV中很多对数据的运算都需要转换为64F类型,比如伽玛变换,这个很明显要求幂的底数是double类型~ 而cvShowImage()又要求是U8才能显示,否则显示出来是一片空白! 所以经常要进行转换,怎么做呢?看了下面的几行代码你就知道了! IplImage *pSrcImage = cvLoadImage("pout.jpg", CV_LOAD_IMAGE_UNCHANGED); IplImage *pGrayImage_8U = cvCreateImage(cvGetSi

  • pytorch读取图像数据转成opencv格式实例

    pytorch读取图像数据转成opencv格式方法:先转成numpy通用的格式,再将其转换成opencv格式. pytorch读取的数据使用loaddata这类函数实现.pytorch网络输入图像的格式为(C, H, W),就是(通道数,高,宽)而numpy中图像的格式为(H,W,C). 那就将其通道调换一下.用到函数transpose. 转换方法如下 例如A 的格式为(c,h,w) 那么经过 A = A.transpose(1,2,0) 后就变成了(h,w,c)了 然后用语句 B= cv2.c

  • OpenCV获取图像中直线上的数据具体流程

    需求说明 在对图像进行处理时,经常会有这类需求:客户想要提取出图像中某条直线或者ROI区域内的感兴趣数据,进行重点关注.该需求在图像检测领域尤其常见.ROI区域一般搭配Rect即可完成提取,直线数据的提取没有现成的函数,需要自行实现. 当直线为纵向或者横向时,比较简单,只需要从起点到终点提取该行或者列的数据即可:但是直线若为斜向的,则需要从起点出发,向终点方向逐个像素提取.大家都知道,图像是由许多像素组成,而斜向直线的数据提取路线并不一定就是标准的斜线,也可能是呈阶梯状的路线,而如何进行路线设计

  • OpenCV提取图像中圆线上的数据具体流程

    目录 需求说明 具体流程 功能函数 C++测试代码 测试效果 总结 需求说明 在对图像进行处理时,经常会有这类需求:客户想要提取出图像中某条直线.圆线或者ROI区域内的感兴趣数据,进行重点关注.该需求在图像检测领域尤其常见.ROI区域一般搭配Rect即可完成提取,直线和圆线数据的提取没有现成的函数,需要自行实现. 直线的提取见: OpenCV获取图像中直线上的数据具体流程 而圆线的提取则是本文要将的内容,对圆线而言,将线上某点作为起点,沿顺时针或逆时针方向依次提取感兴趣数据,可放置在容器中.那么

  • openCV提取图像中的矩形区域

    改编自详解利用OpenCV提取图像中的矩形区域(PPT屏幕等)原文是c++版,我改成了python版,供大家参考学习. 主要思想:边缘检测->轮廓检测->找出最大的面积的轮廓->找出顶点->投影变换 import numpy as np import cv2 # 这个成功的扣下了ppt白板 srcPic = cv2.imread('2345.jpg') length=srcPic.shape[0] depth=srcPic.shape[1] polyPic = srcPic shr

  • 详解利用OpenCV提取图像中的矩形区域(PPT屏幕等)

    前言 最近参加了大创项目,题目涉及到计算机视觉,学姐发了个修正图像的博客链接,于是打算用这个题目入门OpenCV. 分析问题 照片中的PPT区域总是沿着x,y,z三个轴都有倾斜(如下图),要想把照片翻转到平行位置,需要进行透视变换,而透视变换需要同一像素点变换前后的坐标.由此可以想到,提取矩形区域四个角的坐标作为变换前的坐标,变换后的坐标可以设为照片的四个角落,经过投影变换,矩形区域将会翻转并充满图像. 因此我们要解决的问题变为:提取矩形的四个角落.进行透视变换. 提取矩形角落坐标 矩形的检测主

  • OpenCV识别提取图像中的水平线与垂直线

    本文实例为大家分享了OpenCV识别提取图像中的水平线与垂直线,供大家参考,具体内容如下 1).原理 图像形态学操作时候,可以通过自定义的结构元素实现结构元素 对输入图像一些对象敏感.另外一些对象不敏感,这样就会让敏感的对象改变而不敏感的对象保留输出.通过使用两个最基本的形态学操作 – 膨胀与腐蚀,使用不同的结构元素实现对输入图像的操作.得到想要的结果. -膨胀,输出的像素值是结构元素覆盖下输入图像的最大像素值 -腐蚀,输出的像素值是结构元素覆盖下输入图像的最小像素值 常见的形状:矩形.园.直线

  • OpenCV选择图像中矩形区域并保存

    本文实例为大家分享了OpenCV选择图像中矩形区域并保存的具体代码,供大家参考,具体内容如下 根据<Learning OpenCV>中的example4.1改写: // An example program in which the // user can draw boxes on the screen. // //#include <cv.h> //#include <highgui.h> #include "opencv2/imgproc/imgproc

  • 使用OpenCV检测图像中的矩形

    本文实例为大家分享了OpenCV检测图像中矩形的具体代码,供大家参考,具体内容如下 前言 1.OpenCV没有内置的矩形检测的函数,如果想检测矩形,要自己去实现. 2.我这里使用的OpenCV版本是3.30. 矩形检测 1.得到原始图像之后,代码处理的步骤是: (1)滤波增强边缘. (2)分离图像通道,并检测边缘. (3) 提取轮廓. (4)使用图像轮廓点进行多边形拟合. (5)计算轮廓面积并得到矩形4个顶点. (6)求轮廓边缘之间角度的最大余弦. (7)画出矩形. 2.代码 //检测矩形 //

  • C#使用OpenCV剪切图像中的圆形和矩形的示例代码

    前言 本文主要介绍如何使用OpenCV剪切图像中的圆形和矩形. 准备工作 首先创建一个Wpf项目--WpfOpenCV,这里版本使用Framework4.7.2. 然后使用Nuget搜索[Emgu.CV],如下图. 这里的Emgu.CV选择4.3.0.3890版本,然后安装Emgu.CV和Emgu.CV.runtime.windows. 使用OPenCV剪切矩形 现在,我们进入项目,进行OPenCV的调用. 首先引入命名空间,如下: using Emgu.CV; using Emgu.CV.Cv

  • 使用Python和OpenCV检测图像中的物体并将物体裁剪下来

    介绍 硕士阶段的毕设是关于昆虫图像分类的,代码写到一半,上周五导师又给我新的昆虫图片数据集了,新图片中很多图片很大,但是图片中的昆虫却很小,所以我就想着先处理一下图片,把图片中的昆虫裁剪下来,这样除去大部分无关背景,应该可以提高识别率. 原图片举例(将红色矩形框部分裁剪出来)): step1:加载图片,转成灰度图 image = cv2.imread("353.jpg") gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) step2:用Sob

  • 超详细注释之OpenCV制作图像Mask

    这篇博客将介绍如何使用OpenCV制作Mask图像掩码.使用位运算和图像掩码允许我们只关注图像中感兴趣的部分,截取出任意区域的ROIs. 应用: 图像感兴趣区域的截取: 图像融合:构建透明的叠加层: 1. 效果图 原始图如下:(老九门颖宝&佛爷~) 矩形掩码 VS 效果图如下:(使用矩形掩码,只提取图像中包含人物的区域,而忽略其他区域) 圆形掩码 VS 效果图如下:(圆形掩模显示在左边,掩模的应用在右边.实质上可以使用任意形状的掩码图像,如矩形.圆.线.多边形等从图像中提取区域) 2. 源码 #

随机推荐