Input系统之InputReader概要性实例分析
目录
- InputReader 的创建
- EventHub 创建过程如下
- InputReader 的运行
- EventHub 提供事件
InputReader 的创建
从 InputManagerService: 创建与启动 可知,Input 系统的主要功能,主要集中在 native 层,并且Input 系统的 native 层又包含 InputReader, InputClassifer, InputDispatcher 三个子模块。本文来分析 InputReader 从创建到启动的基本流程,为后续分析 InputReader 的每一个功能打好基础。
从 InputManagerService: 创建与启动 可知, InputReader 的创建过程如下
// InputReaderFactory.cpp sp<InputReaderInterface> createInputReader(const sp<InputReaderPolicyInterface>& policy, const sp<InputListenerInterface>& listener) { return new InputReader(std::make_unique<EventHub>(), policy, listener); }
InputReader 依赖 EventHub,因此首先要看下 EventHub 的创建过程
EventHub::EventHub(void) : mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD), mNextDeviceId(1), mControllerNumbers(), mNeedToSendFinishedDeviceScan(false), mNeedToReopenDevices(false), mNeedToScanDevices(true), // mNeedToScanDevices 初始化为 true,表示需要扫描输入设备 mPendingEventCount(0), mPendingEventIndex(0), mPendingINotify(false) { ensureProcessCanBlockSuspend(); // 1. 创建 epoll mEpollFd = epoll_create1(EPOLL_CLOEXEC); // 2. 初始化 inotify mINotifyFd = inotify_init(); // 监听 /dev/input/ 目录项的创建与删除,其实就是监听输入设备的创建与删除 mInputWd = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE); // ... // 3. epoll 监听 inotify 事件 // 可读事件,表明有输入设备的创建与删除 struct epoll_event eventItem = {}; eventItem.events = EPOLLIN | EPOLLWAKEUP; eventItem.data.fd = mINotifyFd; int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem); // 4. 创建管道 int wakeFds[2]; result = pipe(wakeFds); mWakeReadPipeFd = wakeFds[0]; mWakeWritePipeFd = wakeFds[1]; // 设置管道两端为非阻塞 result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK); result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK); // 5. epoll 监听管道读端的事件 // 可读事件,表明需要唤醒 InputReader 线程,触发条件一般为配置更新 eventItem.data.fd = mWakeReadPipeFd; result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem); }
EventHub 创建过程如下
- 创建 epoll 实例。
- 初始化 inotify 实例,并用 epoll 监听它的事件。当输入设备添加/删除时,epoll 就会收到 inotify 的可读事件,因此 EventHub 和 InputReader 就可以动态地处理输入设备的添加/删除。
- 创建管道。
- epoll 监听管道的读端的事件。当配置更新时,会向管道的写端写入数据,epoll 就会收到管道的可读事件,如果此时 InputReader 线程处于休眠状态,那么 InputReader 将被唤醒来处于配置更新。
epoll, inotify, pipe,它们的作用和使用方式,请读者自行查阅 Unix/Linux 资料。
现在让我们继续看下 InputReader 的创建过程
InputReader::InputReader(std::shared_ptr<EventHubInterface> eventHub, const sp<InputReaderPolicyInterface>& policy, const sp<InputListenerInterface>& listener) : mContext(this), // mContext 代表 InputReader 的环境 mEventHub(eventHub), mPolicy(policy), mGlobalMetaState(0), mLedMetaState(AMETA_NUM_LOCK_ON), mGeneration(1), mNextInputDeviceId(END_RESERVED_ID), mDisableVirtualKeysTimeout(LLONG_MIN), mNextTimeout(LLONG_MAX), mConfigurationChangesToRefresh(0) { // InputReader 会把加工后的事件添加到 QueuedInputListener 队列中,之后一起分发给 InputClassifier mQueuedListener = new QueuedInputListener(listener); { // acquire lock std::scoped_lock _l(mLock); // 刷新配置 // 其实就是更新 InputReader::mConfig refreshConfigurationLocked(0); // 更新 InputReader::mGlobalMetaState // 与键盘输入设备的meta按键相关 updateGlobalMetaStateLocked(); } // release lock }
InputReader 的构造函数很简单,就是成员变量的初始化。其中需要重点看下 refreshConfigurationLocked(0) 是如何刷新 InputReader 配置
// 注意,此时参数 changes 为 0 void InputReader::refreshConfigurationLocked(uint32_t changes) { // 通过 InputReaderPolicyInterface 获取配置,保存到 InputReader::mConfig 中 mPolicy->getReaderConfiguration(&mConfig); // EventHub 保存排除的设备 mEventHub->setExcludedDevices(mConfig.excludedDeviceNames); if (!changes) return; // ... }
原来 InputReader::mConfig 代表的就是 InputReader 的配置,并且是通过 InputReaderPolicyInterface mPolicy 获取配置的。
从 InputManagerService: 创建与启动 可知,InputReaderPolicyInterface 接口的实现者是 NativeInputManager ,而 NativeInputManager 是 Input 系统的上层与底层沟通的桥梁,因此 InputReader 必定是通过 NativeInputManager 向上层获取配置
void NativeInputManager::getReaderConfiguration(InputReaderConfiguration* outConfig) { ATRACE_CALL(); JNIEnv* env = jniEnv(); // 1. 通过JNI,向上层 InputManagerService 获取配置,并保存到 outConfig 中 jint virtualKeyQuietTime = env->CallIntMethod(mServiceObj, gServiceClassInfo.getVirtualKeyQuietTimeMillis); if (!checkAndClearExceptionFromCallback(env, "getVirtualKeyQuietTimeMillis")) { outConfig->virtualKeyQuietTime = milliseconds_to_nanoseconds(virtualKeyQuietTime); } outConfig->excludedDeviceNames.clear(); jobjectArray excludedDeviceNames = jobjectArray(env->CallStaticObjectMethod( gServiceClassInfo.clazz, gServiceClassInfo.getExcludedDeviceNames)); if (!checkAndClearExceptionFromCallback(env, "getExcludedDeviceNames") && excludedDeviceNames) { jsize length = env->GetArrayLength(excludedDeviceNames); for (jsize i = 0; i < length; i++) { std::string deviceName = getStringElementFromJavaArray(env, excludedDeviceNames, i); outConfig->excludedDeviceNames.push_back(deviceName); } env->DeleteLocalRef(excludedDeviceNames); } // Associations between input ports and display ports // The java method packs the information in the following manner: // Original data: [{'inputPort1': '1'}, {'inputPort2': '2'}] // Received data: ['inputPort1', '1', 'inputPort2', '2'] // So we unpack accordingly here. outConfig->portAssociations.clear(); jobjectArray portAssociations = jobjectArray(env->CallObjectMethod(mServiceObj, gServiceClassInfo.getInputPortAssociations)); if (!checkAndClearExceptionFromCallback(env, "getInputPortAssociations") && portAssociations) { jsize length = env->GetArrayLength(portAssociations); for (jsize i = 0; i < length / 2; i++) { std::string inputPort = getStringElementFromJavaArray(env, portAssociations, 2 * i); std::string displayPortStr = getStringElementFromJavaArray(env, portAssociations, 2 * i + 1); uint8_t displayPort; // Should already have been validated earlier, but do it here for safety. bool success = ParseUint(displayPortStr, &displayPort); if (!success) { ALOGE("Could not parse entry in port configuration file, received: %s", displayPortStr.c_str()); continue; } outConfig->portAssociations.insert({inputPort, displayPort}); } env->DeleteLocalRef(portAssociations); } outConfig->uniqueIdAssociations.clear(); jobjectArray uniqueIdAssociations = jobjectArray( env->CallObjectMethod(mServiceObj, gServiceClassInfo.getInputUniqueIdAssociations)); if (!checkAndClearExceptionFromCallback(env, "getInputUniqueIdAssociations") && uniqueIdAssociations) { jsize length = env->GetArrayLength(uniqueIdAssociations); for (jsize i = 0; i < length / 2; i++) { std::string inputDeviceUniqueId = getStringElementFromJavaArray(env, uniqueIdAssociations, 2 * i); std::string displayUniqueId = getStringElementFromJavaArray(env, uniqueIdAssociations, 2 * i + 1); outConfig->uniqueIdAssociations.insert({inputDeviceUniqueId, displayUniqueId}); } env->DeleteLocalRef(uniqueIdAssociations); } jint hoverTapTimeout = env->CallIntMethod(mServiceObj, gServiceClassInfo.getHoverTapTimeout); if (!checkAndClearExceptionFromCallback(env, "getHoverTapTimeout")) { jint doubleTapTimeout = env->CallIntMethod(mServiceObj, gServiceClassInfo.getDoubleTapTimeout); if (!checkAndClearExceptionFromCallback(env, "getDoubleTapTimeout")) { jint longPressTimeout = env->CallIntMethod(mServiceObj, gServiceClassInfo.getLongPressTimeout); if (!checkAndClearExceptionFromCallback(env, "getLongPressTimeout")) { outConfig->pointerGestureTapInterval = milliseconds_to_nanoseconds(hoverTapTimeout); // We must ensure that the tap-drag interval is significantly shorter than // the long-press timeout because the tap is held down for the entire duration // of the double-tap timeout. jint tapDragInterval = max(min(longPressTimeout - 100, doubleTapTimeout), hoverTapTimeout); outConfig->pointerGestureTapDragInterval = milliseconds_to_nanoseconds(tapDragInterval); } } } jint hoverTapSlop = env->CallIntMethod(mServiceObj, gServiceClassInfo.getHoverTapSlop); if (!checkAndClearExceptionFromCallback(env, "getHoverTapSlop")) { outConfig->pointerGestureTapSlop = hoverTapSlop; } // 2. 从 NativeInputManager::mLocked 更新配置,保存到 outConfig 中 // NativeInputManager::mLocked 的数据是上层经由 InputManagerService 传入的 { // acquire lock AutoMutex _l(mLock); outConfig->pointerVelocityControlParameters.scale = exp2f(mLocked.pointerSpeed * POINTER_SPEED_EXPONENT); outConfig->pointerGesturesEnabled = mLocked.pointerGesturesEnabled; outConfig->showTouches = mLocked.showTouches; outConfig->pointerCapture = mLocked.pointerCapture; outConfig->setDisplayViewports(mLocked.viewports); outConfig->defaultPointerDisplayId = mLocked.pointerDisplayId; outConfig->disabledDevices = mLocked.disabledInputDevices; } // release lock }
从整体看,获取 InputReader 配置的方式有两种
- 通过 JNI 向上层的 InputManagerService 获取配置。
- 从 NativeInputManager::mLocked 获取配置。
从 InputManagerService: 创建与启动 可知,NativeInputManager::mLocked 是在 NativeInputManager 的构造函数中进行初始化的,但是它并不是不变的,而是上层经由 InputManagerService 进行操控的。
例如,mLocked.showTouches 对应开发者模式下的 Show taps 功能,InputManagerService 会监听这个开关的状态,相应地改变 mLocked.showTouches,并且会通知 InputReader 配置改变了,InputReader 在处理配置改变的过程时,会重新获取 mLocked.showTouches 这个配置。
有 一部分 的配置是可以通过 adb shell dumpsys input 命令进行查看的
Input Manager State: Interactive: true System UI Lights Out: false Pointer Speed: 0 Pointer Gestures Enabled: true Show Touches: false Pointer Capture: Disabled, seq=0
而另外一部分配置,由于会对输入设备进行配置,因此可以从 dump 出的输入设备的信息中查看。
InputReader 的运行
从 InputManagerService: 创建与启动 可知,InputReader 通过线程,循环调用 InputReader::loopOnce() 执行任务
void InputReader::loopOnce() { int32_t oldGeneration; int32_t timeoutMillis; bool inputDevicesChanged = false; std::vector<InputDeviceInfo> inputDevices; { // acquire lock std::scoped_lock _l(mLock); oldGeneration = mGeneration; timeoutMillis = -1; // 1. 如果配置有改变,那么就刷新配置 uint32_t changes = mConfigurationChangesToRefresh; if (changes) { mConfigurationChangesToRefresh = 0; timeoutMillis = 0; // 刷新配置 refreshConfigurationLocked(changes); } else if (mNextTimeout != LLONG_MAX) { nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); timeoutMillis = toMillisecondTimeoutDelay(now, mNextTimeout); } } // release lock // 2. 从 EventHub 获取事件 size_t count = mEventHub->getEvents(timeoutMillis, mEventBuffer, EVENT_BUFFER_SIZE); { // acquire lock std::scoped_lock _l(mLock); mReaderIsAliveCondition.notify_all(); // 3. 处理事件 if (count) { processEventsLocked(mEventBuffer, count); } if (mNextTimeout != LLONG_MAX) { nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); if (now >= mNextTimeout) { mNextTimeout = LLONG_MAX; timeoutExpiredLocked(now); } } // 4. 处理输入设备改变 // 4.1 输入设备改变,重新获取输入设备信息 if (oldGeneration != mGeneration) { inputDevicesChanged = true; inputDevices = getInputDevicesLocked(); } } // release lock // 4.2 通知监听者,输入设备改变了 if (inputDevicesChanged) { mPolicy->notifyInputDevicesChanged(inputDevices); } // 5. 刷新队列中缓存的事件 // 其实就是把事件分发给 InputClassifier mQueuedListener->flush(); }
InputReader 所做的事情如下
- 如果配置改变了,那么就更新配置。
- 从 EventHub 获取事件,并处理获取到的事件。在处理事件的过程中,InputReader 会对事件进行加工,然后保存到 QueuedInputListener 缓存队列中。
- 如果设备发生改变,那么重新获取新的设备信息,并通知监听者。
- QueuedInputListener 刷新缓存的事件,其实就是把 InputReader 加工后的事件分发给 InputClassifer。
EventHub 提供事件
InputReader 的本质就是处理从 EventHub 获取的事件,然后分发给下一环。因为我们必须了解 EventHub::getEvents() 是如何为 InputReader 提供事件的
// EventHub.cpp size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) { ALOG_ASSERT(bufferSize >= 1); std::scoped_lock _l(mLock); struct input_event readBuffer[bufferSize]; RawEvent* event = buffer; size_t capacity = bufferSize; bool awoken = false; for (;;) { nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); // Reopen input devices if needed. if (mNeedToReopenDevices) { // ... } // Report any devices that had last been added/removed. for (auto it = mClosingDevices.begin(); it != mClosingDevices.end();) { // ... } // 扫描输入设备 if (mNeedToScanDevices) { mNeedToScanDevices = false; scanDevicesLocked(); mNeedToSendFinishedDeviceScan = true; } // 为扫描后打开的每一个输入设备,填充一个类型为 DEVICE_ADDED 的事件 while (!mOpeningDevices.empty()) { std::unique_ptr<Device> device = std::move(*mOpeningDevices.rbegin()); mOpeningDevices.pop_back(); event->when = now; event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id; event->type = DEVICE_ADDED; event += 1; // Try to find a matching video device by comparing device names for (auto it = mUnattachedVideoDevices.begin(); it != mUnattachedVideoDevices.end(); it++) { // ... } // 每次填充完事件,就把设备 Device 保存到 mDevices 中 auto [dev_it, inserted] = mDevices.insert_or_assign(device->id, std::move(device)); if (!inserted) { ALOGW("Device id %d exists, replaced.", device->id); } // 表明你需要发送设备扫描完成事件 mNeedToSendFinishedDeviceScan = true; if (--capacity == 0) { break; } } // 填充设备扫描完成事件 if (mNeedToSendFinishedDeviceScan) { mNeedToSendFinishedDeviceScan = false; event->when = now; event->type = FINISHED_DEVICE_SCAN; event += 1; if (--capacity == 0) { break; } } // Grab the next input event. bool deviceChanged = false; // 处理 epoll 事件 while (mPendingEventIndex < mPendingEventCount) { // 处理 inotify 事件,表明输入设备新增或者删除 const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++]; if (eventItem.data.fd == mINotifyFd) { if (eventItem.events & EPOLLIN) { mPendingINotify = true; } else { ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events); } continue; } // 处理管道事件,这是用来唤醒 InputReader 线程 if (eventItem.data.fd == mWakeReadPipeFd) { if (eventItem.events & EPOLLIN) { ALOGV("awoken after wake()"); awoken = true; char wakeReadBuffer[16]; ssize_t nRead; do { nRead = read(mWakeReadPipeFd, wakeReadBuffer, sizeof(wakeReadBuffer)); } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(wakeReadBuffer)); } else { ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.", eventItem.events); } continue; } // 接下来是处理设备的输入事件 Device* device = getDeviceByFdLocked(eventItem.data.fd); if (device == nullptr) { continue; } if (device->videoDevice && eventItem.data.fd == device->videoDevice->getFd()) { // ... } if (eventItem.events & EPOLLIN) { // 读取输入事件以及数量 int32_t readSize = read(device->fd, readBuffer, sizeof(struct input_event) * capacity); if (readSize == 0 || (readSize < 0 && errno == ENODEV)) { // Device was removed before INotify noticed. ALOGW("could not get event, removed? (fd: %d size: %" PRId32 " bufferSize: %zu capacity: %zu errno: %d)\n", device->fd, readSize, bufferSize, capacity, errno); deviceChanged = true; closeDeviceLocked(*device); } else if (readSize < 0) { if (errno != EAGAIN && errno != EINTR) { ALOGW("could not get event (errno=%d)", errno); } } else if ((readSize % sizeof(struct input_event)) != 0) { ALOGE("could not get event (wrong size: %d)", readSize); } else { int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id; // 为每一个输入事件,填充一个事件 size_t count = size_t(readSize) / sizeof(struct input_event); for (size_t i = 0; i < count; i++) { struct input_event& iev = readBuffer[i]; event->when = processEventTimestamp(iev); event->readTime = systemTime(SYSTEM_TIME_MONOTONIC); event->deviceId = deviceId; event->type = iev.type; event->code = iev.code; event->value = iev.value; event += 1; capacity -= 1; } if (capacity == 0) { // The result buffer is full. Reset the pending event index // so we will try to read the device again on the next iteration. mPendingEventIndex -= 1; break; } } } else if (eventItem.events & EPOLLHUP) { ALOGI("Removing device %s due to epoll hang-up event.", device->identifier.name.c_str()); deviceChanged = true; closeDeviceLocked(*device); } else { ALOGW("Received unexpected epoll event 0x%08x for device %s.", eventItem.events, device->identifier.name.c_str()); } } // 处理设备改变 // mPendingEventIndex >= mPendingEventCount 表示处理完所有的输入事件后,再处理设备的改变 if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) { mPendingINotify = false; readNotifyLocked(); deviceChanged = true; } // 设备发生改变,那么跳过当前循环,在下一个循环的开头处理设备改变 if (deviceChanged) { continue; } // 如果有事件,或者被唤醒,那么终止循环,接下来 InputReader 会处理事件或者更新配置 if (event != buffer || awoken) { break; } mPendingEventIndex = 0; mLock.unlock(); // release lock before poll // 此时没有事件,并且也没有被唤醒,那么超时等待 epoll 事件 int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis); mLock.lock(); // reacquire lock after poll if (pollResult == 0) { // 处理超时... } if (pollResult < 0) { // 处理错误... } else { // 保存待处理事件的数量 mPendingEventCount = size_t(pollResult); } } // 返回事件的数量 return event - buffer; }
EventHub::getEvent() 提供事件的过程很长,但是现在我们不必去了解所有的细节,我们要有从整体看局部的眼光。EventHub 其实只生成了两类事件
- 设备的添加/删除事件。这种事件不是通过操作设备而产生的,系统称之为合成事件。
- 输入事件。这种事件是通过操作设备产生的,例如手指在触摸屏上滑动,系统称之为元输入事件。
看来我们得分两部分来分析这两类事件的生成以及处理过程,因此下一篇文章,我们分析合成事件的生成以及处理过程。
以上就是Input系统之InputReader概要性实例分析的详细内容,更多关于Input系统InputReader概要性的资料请关注我们其它相关文章!