python转换wrf输出的数据为网页可视化json格式

目录
  • 前言
  • NCL插值脚本1
  • NCL插值脚本2
  • python格式转换脚本1
  • python 格式转换脚本2

前言

  • 一般网页可视化风场中的数据都是json格式,而如果我们希望将wrf模式模拟输出的风场数据在网页中进行展示,这就需要先将wrfoutput数据转换为网页可以识别的json格式。
  • 这里主要需要用到json库,主要的实现方式就是将读取的风场风量U,V转换为字典并存到json文件中
  • 同时,由于wrf模拟的数据一般是非等间距的网格,需要先将数据进行插值,插值到等间距的网格,这里可以通过NCL的函数rcm2rgrid_Wrap实现

举个例子,将模式中设置为兰伯特投影的网格:

插值为等间距网格:

主要的编程分为两部分:

  • 第一部分通过NCL脚本将wrfout数据转换为等间距网格,并导出为netcdf格式;
  • 第二部分通过python脚本将第一步导出的nc格式进行转换,并保存输出为json格式。

NCL插值脚本1

需要修改的就是路径和变量,我下面展示脚本不仅有风场数据u,v还有降水,海表面压力,气温等,可自行修改

begin
  a = addfile("/Users/WRF/outdata/2022071000/wrfout_d01_2022-07-10_01:00:00","r")
  lat2d = a->XLAT(0,:,:)
  lon2d = a->XLONG(0,:,:)
  lat1d = lat2d(:,0)
  lon1d = lon2d(0,:)

  time = wrf_user_getvar(a,"XTIME",-1)
  u10 = wrf_user_getvar(a,"U10",0)
  v10 = wrf_user_getvar(a,"V10",0)
  slp = wrf_user_getvar(a,"slp",0)
  t2  = wrf_user_getvar(a,"T2",0)
  td  = wrf_user_getvar(a,"td",0)
  rainc = wrf_user_getvar(a,"RAINC",0)
  rainnc = wrf_user_getvar(a,"RAINNC",0)

  u10@lat2d = lat2d
  u10@lon2d = lon2d
  u10_ip = rcm2rgrid_Wrap(lat2d,lon2d,u10,lat1d,lon1d,0)

  v10@lat2d = lat2d
  v10@lon2d = lon2d
  v10_ip = rcm2rgrid_Wrap(lat2d,lon2d,v10,lat1d,lon1d,0)

  slp_ip  =   rcm2rgrid_Wrap(lat2d,lon2d,slp,lat1d,lon1d,0)
  t2_ip  =   rcm2rgrid_Wrap(lat2d,lon2d,t2,lat1d,lon1d,0)
  td_ip  =   rcm2rgrid_Wrap(lat2d,lon2d,td,lat1d,lon1d,0)
  rainc_ip  =   rcm2rgrid_Wrap(lat2d,lon2d,rainc,lat1d,lon1d,0)
  rainnc_ip  =   rcm2rgrid_Wrap(lat2d,lon2d,rainnc,lat1d,lon1d,0)
  outf = addfile("/Users/wrfout_d01_2022-07-10_01:00:00.nc","c")
  outf->time =  time
  outf->lat  =  lat2d
  outf->lon  =  lon2d
  outf->u10  =  u10_ip
  outf->v10  =  v10_ip
  outf->slp  =  slp_ip
  outf->t2   =  t2_ip
  outf->td   =  td_ip
  outf->rainc   =  rainc_ip
  outf->rainnc  =  rainnc_ip
end

上述脚本的缺点在于只能基于模式模拟的经纬度区域进行插值,意思就是说他的经纬度区域是固定的那么大

NCL插值脚本2

NCL还有一个函数可以实现上述过程,就是ESMF_regrid,该函数的优点在于可以实现任意经纬度范围的插值,但是不足在于对于存在高度层的变量,暂时无法进行高度层的数据读取。

(也可能我水平有限不知道。。。。)这里也附上脚本:

load "$NCARG_ROOT/lib/ncarg/nclscripts/esmf/ESMF_regridding.ncl"

begin
  a = addfile("/Users/WRF/outdata/2022071000/wrfout_d01_2022-07-10_01:00:00","r")
  u10 = wrf_user_getvar(a,"U10",0)
  v10 = wrf_user_getvar(a,"V10",0)
  slp = wrf_user_getvar(a,"slp",0)
  t2  = wrf_user_getvar(a,"T2",0)
;  td  = wrf_user_getvar(a,"td",0)
  rainc = wrf_user_getvar(a,"RAINC",0)
  rainnc = wrf_user_getvar(a,"RAINNC",0)

  u10@lat2d = a->XLAT(0,:,:)
  u10@lon2d = a->XLONG(0,:,:)
  v10@lat2d = a->XLAT(0,:,:)
  v10@lon2d = a->XLONG(0,:,:)
  slp@lat2d = a->XLAT(0,:,:)
  slp@lon2d = a->XLONG(0,:,:)
  t2@lat2d = a->XLAT(0,:,:)
  t2@lon2d = a->XLONG(0,:,:)
;  td@lat2d = a->XLAT(0,:,:)
;  td@lon2d = a->XLONG(0,:,:)
  rainc@lat2d = a->XLAT(0,:,:)
  rainc@lon2d = a->XLONG(0,:,:)
  rainnc@lat2d = a->XLAT(0,:,:)
  rainnc@lon2d = a->XLONG(0,:,:)

  lat2d = a->XLAT(0,:,:)
  lon2d = a->XLONG(0,:,:)
  lat1d = lat2d(:,0)
  lon1d = lon2d(0,:)
  latS = -20
  latN = 50
  lonW = 95
  lonE = 145

  Opt = True
  Opt@InterpMethod = "bilinear"
  Opt@ForceOverwrite = True 

  Opt@SrcMask2D = where(.not. ismissing(v10),1,0)
  Opt@DstGridType = "0.1deg"
  Opt@DstLLCorner = (/latS, lonW /)
  Opt@DstURCorner = (/latN, lonE /) 

  u10_regrid = ESMF_regrid(u10,Opt)
  v10_regrid = ESMF_regrid(v10,Opt)
  slp_regrid = ESMF_regrid(slp,Opt)
  t2_regrid = ESMF_regrid(t2,Opt)
;  td_regrid = ESMF_regrid(td,Opt)
  rainc_regrid = ESMF_regrid(rainc,Opt)
  rainnc_regrid = ESMF_regrid(rainnc,Opt)

  time = wrf_user_getvar(a,"XTIME",-1)

  nlon = dimsizes(v10_regrid&lon)
  nlat = dimsizes(v10_regrid&lat)

  ofile = "wrfout_d01_2022-07-10_01:00:00.nc"
  system("rm -rf "+ofile)
  fout = addfile(ofile,"c") 

  dimNames = (/"lat", "lon"/)
  dimSizes = (/nlat, nlon/)
  dimUnlim = (/False, False/)

  filedimdef(fout,dimNames,dimSizes,dimUnlim) ;-- define dimensions

  filevardef(fout,"lat",typeof(v10_regrid&lat),getvardims(v10_regrid&lat))
  filevardef(fout,"lon",typeof(v10_regrid&lon),getvardims(v10_regrid&lon))

  filevardef(fout,"u10",typeof(u10_regrid),getvardims(u10_regrid))
  filevardef(fout,"v10",typeof(v10_regrid),getvardims(v10_regrid))
  filevardef(fout,"slp",typeof(slp_regrid),getvardims(slp_regrid))
  filevardef(fout,"t2",typeof(t2_regrid),getvardims(t2_regrid))
;  filevardef(fout,"td",typeof(td_regrid),getvardims(td_regrid))
  filevardef(fout,"rainc",typeof(rainc_regrid),getvardims(rainc_regrid))
  filevardef(fout,"rainnc",typeof(rainnc_regrid),getvardims(rainnc_regrid))

  filevarattdef(fout,"lat",v10_regrid&lat) ;-- copy lat attributes
  filevarattdef(fout,"lon",v10_regrid&lon) ;-- copy lon attributes
  filevarattdef(fout,"u10",u10_regrid)
  filevarattdef(fout,"v10",v10_regrid)
  filevarattdef(fout,"slp",slp_regrid)
  filevarattdef(fout,"t2",t2_regrid)
;  filevarattdef(fout,"td",td_regrid)
  filevarattdef(fout,"rainc",rainc_regrid)
  filevarattdef(fout,"rainnc",rainnc_regrid)

  setfileoption(fout,"DefineMode",False)

  fout->u10 = (/u10_regrid/)
  fout->v10 = (/v10_regrid/)
  fout->slp = (/slp_regrid/)
  fout->t2 = (/t2_regrid/)
;  fout->td = (/td_regrid/)
  fout->rainc  = (/rainc_regrid/)
  fout->rainnc = (/rainnc_regrid/) 

  fout->lat = (/v10_regrid&lat/) ;-- write lat to new netCDF file
  fout->lon = (/v10_regrid&lon/) ;-- write lon to new netCDF file
  fout->time =  time
end

PS:运行该脚本会生成四个nc文件,分别为:destination_grid_file.nc、source_grid_file.nc、weights_file.nc、wrfout_d01_2022-07-10_01:00:00.nc。其中,wrfout_d01_2022-07-10_01:00:00.nc是我需要的文件,但是其他三个文件如何在运行脚本的过程去掉暂未解决。

python格式转换脚本1

python脚本如下所示:

# -*- coding: utf-8 -*-
"""
Created on %(date)s

@author: %(jixianpu)s

Email : 211311040008@hhu.edu.cn

introduction : keep learning althongh walk slowly
"""
"""
用来读取用ncl插值后的wrfoutput.nc 数据,并生成对应文件名的json格式
"""
import pandas as pd
import os
import json
import netCDF4 as nc
import numpy as np
import  datetime
from netCDF4 import Dataset
import argparse
from argparse import RawDescriptionHelpFormatter
import xarray as xr
import sys
import glob

date = sys.argv[1]
date = str(date)
frst = sys.argv[2]
step = sys.argv[3]

path = r'/Users/WRF/outdata/2022071000/'#只能是已经存在的文件目录且有数据才可以进行读取
start = datetime.datetime.strptime(date,'%Y%m%d%H').strftime("%Y-%m-%d_%H:%M:%S")
end = (datetime.datetime.strptime(date,'%Y%m%d%H')+datetime.timedelta(hours=int(frst))).strftime("%Y-%m-%d_%H:%M:%S")
intp = (datetime.datetime.strptime(date,'%Y%m%d%H')+datetime.timedelta(hours=int(step))).strftime("%Y-%m-%d_%H:%M:%S")
fstart = path+'/wrfout_d01_'+start+'*'
fintp  = path+'/wrfout_d01_'+intp+'*'
fend   = path+'/wrfout_d01_'+end+'*'
file = path+'/*'
filestart = glob.glob(fstart)
fileintp  = glob.glob(fintp)
fileend   = glob.glob(fend)
filelist  = glob.glob(file)
filelist.sort()
rstart = np.array(np.where(np.array(filelist)==filestart))[0][0]
rintp = np.array(np.where(np.array(filelist)==fileintp))[0][0]
rend   = np.array(np.where(np.array(filelist)==fileend))[0][0]
fn = filelist[rstart:rend:rintp]
outroot = 'Users/'
for i in fn:
    uhdr = {"header":{"discipline":0,"disciplineName":"Meteorological products","gribEdition":2,"gribLength":131858,"center":0,"centerName":"WRF OUTPUT","subcenter":0,"refTime":"2014-01-31T00:00:00.000Z","significanceOfRT":1,"significanceOfRTName":"Start of forecast","productStatus":0,"productStatusName":"Operational products","productType":1,"productTypeName":"Forecast products","productDefinitionTemplate":0,"productDefinitionTemplateName":"Analysis/forecast at horizontal level/layer at a point in time","parameterCategory":2,"parameterCategoryName":"Momentum","parameterNumber":2,"parameterNumberName":"U-component_of_wind","parameterUnit":"m.s-1","genProcessType":2,"genProcessTypeName":"Forecast","forecastTime":3,"surface1Type":103,"surface1TypeName":"Specified height level above ground","surface1Value":10,"surface2Type":255,"surface2TypeName":"Missing","surface2Value":0,"gridDefinitionTemplate":0,"gridDefinitionTemplateName":"Latitude_Longitude","numberPoints":65160,"shape":6,"shapeName":"Earth spherical with radius of 6,371,229.0 m","gridUnits":"degrees","resolution":48,"winds":"true","scanMode":0,"nx":360,"ny":181,"basicAngle":0,"subDivisions":0,"lo1":0,"la1":90,"lo2":359,"la2":-90,"dx":1,"dy":1}}

    vhdr = {"header":{"discipline":0,"disciplineName":"Meteorological products","gribEdition":2,"gribLength":131858,"center":0,"centerName":"WRF OUTPUT","subcenter":0,"refTime":"2014-01-31T00:00:00.000Z","significanceOfRT":1,"significanceOfRTName":"Start of forecast","productStatus":0,"productStatusName":"Operational products","productType":1,"productTypeName":"Forecast products","productDefinitionTemplate":0,"productDefinitionTemplateName":"Analysis/forecast at horizontal level/layer at a point in time","parameterCategory":2,"parameterCategoryName":"Momentum","parameterNumber":3,"parameterNumberName":"V-component_of_wind","parameterUnit":"m.s-1","genProcessType":2,"genProcessTypeName":"Forecast","forecastTime":3,"surface1Type":103,"surface1TypeName":"Specified height level above ground","surface1Value":10,"surface2Type":255,"surface2TypeName":"Missing","surface2Value":0,"gridDefinitionTemplate":0,"gridDefinitionTemplateName":"Latitude_Longitude","numberPoints":65160,"shape":6,"shapeName":"Earth spherical with radius of 6,371,229.0 m","gridUnits":"degrees","resolution":48,"winds":"true","scanMode":0,"nx":360,"ny":181,"basicAngle":0,"subDivisions":0,"lo1":0,"la1":90,"lo2":359,"la2":-90,"dx":1,"dy":1}}

    data = [uhdr, vhdr]
    newf = Dataset(i)
    lat = np.array(newf.variables['lat'])
    # print(fn,lat)
    lon = np.array(newf.variables['lon'])
    dys = np.diff(lat, axis = 0).mean(1)
    dy = float(dys.mean())
    dxs = np.diff(lon, axis = 1).mean(0)
    dx = float(dxs.mean())
    nx = float(lon.shape[1])
    ny = float(lat.shape[0])
    la1 = float(lat[-1, -1])
    la2 = float(lat[0, 0])
    lo1 = float(lon[0, 0])
    lo2 = float(lon[-1, -1])

    time =(newf.variables['time'])

    dates = nc.num2date(time[:],units=time.units)

    dt = pd.to_datetime(np.array(dates, dtype='datetime64[s]')).strftime("%Y%m%d%H%M%S")

    tms =pd.to_datetime(np.array(dates, dtype='datetime64[s]')).strftime("%Y-%m-%d_%H:%M:%S")
    for ti, time in enumerate(dt):

        datestr = (dt[0][:8])
        timestr = (dt[0][8:10])+'00'

        dirpath = outroot + date
        os.makedirs(dirpath, exist_ok = True)
        outpath = os.path.join(dirpath, '%s.json' % (i[-19:]))
        for u0_or_v1 in [0, 1]:

            h = data[u0_or_v1]['header']
            h['la1'] = la1
            h['la2'] = la2
            h['lo1'] = lo1
            h['lo2'] = lo2
            h['nx'] = nx
            h['ny'] = ny
            h['dx'] = dx
            h['dy'] = dy
            h['forecastTime'] = 0
            h['refTime'] = tms[0] + '.000Z'

            h['gribLength'] = 1538 + nx * ny * 2
            if u0_or_v1 == 0:
                data[u0_or_v1]['data'] = np.array(newf.variables['u10']).ravel().tolist()
            elif u0_or_v1 == 1:
                data[u0_or_v1]['data'] = np.array(newf.variables['v10']).ravel().tolist()
        if ti == 0:
            outf = open(outpath, 'w')
            json.dump(data, outf)
            outf.close()
        outf = open(outpath, 'w')
        json.dump(data, outf)
        outf.close()

上述脚本为Linux系统下运行,运行方式如下:

python xx.py 起报时间 时常 间隔

举个例子:

我的wrfout数据名称如下:

python  convert_to_json.py 2022071000 12 06

根据你需要的模式起始时间,起报的时长(小时)以及预报的时间间隔(小时)进行自动化转换。

python 格式转换脚本2

当然,这里也准备了一个windows下的简易脚本,转换出的信息也比较简单,

# -*- coding: utf-8 -*-
"""
Created on %(date)s

@author: %(jixianpu)s

Email : 211311040008@hhu.edu.cn

introduction : keep learning althongh walk slowly
"""
from __future__ import print_function, unicode_literals
import pandas as pd
import os
import json
import netCDF4 as nc
import numpy as np
import  datetime
from netCDF4 import Dataset
import argparse
from argparse import RawDescriptionHelpFormatter
import xarray as xr
# parser = argparse.ArgumentParser(description = """
# """, formatter_class = RawDescriptionHelpFormatter)

args = r'J:/wrf自动化/wrfout_d01_2022-07-10_01_00_00.nc'

outroot = r'D:/'

uhdr = {"header":{
                  "nx":360,
                  "ny":181,
                  "max":11,
                  }}

data = [uhdr]
newf = Dataset(args)
lat = np.array(newf.variables['lat'])
lon = np.array(newf.variables['lon'])
u10 = np.array(newf.variables['u10'])
v10 = np.array(newf.variables['v10'])

# indx = u10>1000

# u10[indx] = np.nan
# v10[indx] = np.nan

w10 = np.nanmax(np.sqrt(u10*u10+v10*v10))

dys = np.diff(lat, axis = 0).mean(1)
dy =    float(dys.mean())
print('Latitude Error:', np.abs((dy / dys) - 1).max())
print('Latitude Sum Error:', (dy / dys - 1).sum())
dxs = np.diff(lon, axis = 1).mean(0)
dx =    float(dxs.mean())
print('Longitude Error:', np.abs(dx / dxs - 1).max())
print('Longitude Sum Error:', (dx / dxs - 1).sum())

nx =    float(lon.shape[1])
ny =    float(lat.shape[0])

la1 =    float(lat[-1, -1])
la2 =   float(lat[0, 0])
lo1 =   float(lon[0, 0])
lo2 =   float(lon[-1, -1])
time =(newf.variables['time'])
dates = nc.num2date(time[:],units=time.units)
dt = pd.to_datetime(np.array(dates, dtype='datetime64[s]')).strftime("%Y%m%d%H%M%S")

ds= {
                      "nx":360,
                      "ny":181,
                      "max":11,
                      # "lo1":0,
                      # "la1":90,
                      # "lo2":359,
                      # "la2":-90,
                      # "dx":1,
                      # "dy":1,
                      # "parameterUnit":"m.s-1",
                      'data':{}
        }

ds['max']   =    float(w10)
ds['nx']    =    (nx)
ds['ny']    =    (ny)
for ti, time in enumerate(dt):
    #2012/02/07/0100Z/wind/surface/level/orthographic=-74.01,4.38,29184
    datestr = (dt[0][:8])
    timestr = (dt[0][8:10])+'00'
    print('Add "#' + datestr + '/' + timestr + 'Z/wind/surface/level/orthographic" to url to see this time')
    dirpath = os.path.join('D:', *datestr.split('/'))
    os.makedirs(dirpath, exist_ok = True)
    outpath = os.path.join(dirpath, '%s-wind-surface-level-gfs-1.0.json' % (timestr,))
    udata=u10.ravel()
    data[0]['data']=[]
    for i in range(len(udata)):

        data[0]['data'].append([
        u10.ravel().tolist()[i],
        v10.ravel().tolist()[i]])

    ds['data'] = data[0]['data']

outf = open(outpath, 'w')
json.dump(ds,outf)
outf.close()

这个脚本正常放在编辑器里面运行即可。

运行完结束,会在你的输出路径下生成一个文件夹:

里面有个json数据:

数据信息比较简单,只有nx(经度的大小),ny(纬度的大小)以及最大值:

ok,以上就是完整的过程,最终将得到的json数据通过.js脚本运行就可以部署到网页上了,简单试了一下,大概如下图所示,可以根据需要自行更改设置:

到此这篇关于python转换wrf输出的数据为网页可视化json格式的文章就介绍到这了,更多相关python可视化json格式内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python实现yaml与json文件批量互转

    目录 1. 安装yaml库 2. yaml转json 3. json转yaml 4. 批量将yaml与json文件互相转换 1. 安装yaml库 想要使用python实现yaml与json格式互相转换,需要先下载pip,再通过pip安装yaml库. 如何下载以及使用pip,可参考:pip的安装与使用,解决pip下载速度慢的问题 安装yaml库: pip install pyyaml 2. yaml转json 新建一个test.yaml文件,添加以下内容: A: hello: name: Mich

  • 关于Python中request发送post请求传递json参数的问题

    昨天遇到了一个奇怪的问题,在Python中需要传递dict参数,利用json.dumps将dict转为json格式用post方法发起请求: params = {"score":{"gt":"80", "lt":"90"}} request.post(url, json.dumps(params)) 但是在服务端接收到的参数日志为: Parameters: {"sno"=>"

  • python中Requests发送json格式的post请求方法

    目录 前言 1.普通string类型 2.string内是字典的 3.元组(嵌套列表或者) 4.字典 5.json 6.传入非嵌套元组或列表 7.以post(url,json=data)请求 前言 问题: 做requests请求时遇到如下报错: {“code”:“500”,“message”:"JSON parse error: Cannot construct instance of com.bang.erpapplication.domain.User (although at least

  • 使用python解析json字段的3种方式实例

    目录 1.运用re.json.jsonpath包解析json思路 2.三种方式的json解析案例 (1)运用re正则表达式解析json (2)运用字典的数据结构性质解析json (3)运用jsonpath的路径解析json 3.附录:re正则表达式语法 附:python 处理非标准 json 格式字符串 总结 1.运用re.json.jsonpath包解析json思路 (1)re:正则表达式,通过json的形式对症下药,写表达式去解析json: (2)json: 通过json中的json.loa

  • 如何利用Python解析超大的json数据(GB级别)

    使用Python解析各种格式的数据都很方便,比如json.txt.xml.csv等.用于处理简单的数据完全足够用了,而且代码简单易懂. 前段时间我遇到一个问题,如何解析超大的json文件呢?刚开始天真的我在使用json.load直接加载json文件,然而内存报错却给了我当头一棒,json.load它是直接将数据加载到内存中然后解析出来的,这说明什么呢?当你的json文件过于庞大的时候,你的电脑内存装不下你的json文件,这时候就相当尴尬了,加载不了,解析不了!! 怎么办呢?我赶紧上网查阅资料,网

  • Python中使用json.load()和json.loads()加载json数据的方法实例

    目录 前言 预备知识: 使用方法 总结 前言 最近在python里面用json读取json文件,可是老是不成功,特此记录一下. 预备知识: def load(fp, cls=None, object_hook=None, parse_float=None, parse_int=None, parse_constant=None, object_pairs_hook=None, **kw): """Deserialize ``fp`` (a ``.read()``-suppor

  • python转换wrf输出的数据为网页可视化json格式

    目录 前言 NCL插值脚本1 NCL插值脚本2 python格式转换脚本1 python 格式转换脚本2 前言 一般网页可视化风场中的数据都是json格式,而如果我们希望将wrf模式模拟输出的风场数据在网页中进行展示,这就需要先将wrfoutput数据转换为网页可以识别的json格式. 这里主要需要用到json库,主要的实现方式就是将读取的风场风量U,V转换为字典并存到json文件中 同时,由于wrf模拟的数据一般是非等间距的网格,需要先将数据进行插值,插值到等间距的网格,这里可以通过NCL的函

  • python3实现从kafka获取数据,并解析为json格式,写入到mysql中

    项目需求:将kafka解析来的日志获取到数据库的变更记录,按照订单的级别和订单明细级别写入数据库,一条订单的所有信息包括各种维度信息均保存在一条json中,写入mysql5.7中. 配置信息: [Global] kafka_server=xxxxxxxxxxx:9092 kafka_topic=mes consumer_group=test100 passwd = tracking port = 3306 host = xxxxxxxxxx user = track schema = track

  • JS获取一个表单字段中多条数据并转化为json格式

    如图需要获取下面两个li标签里面的数据,然后传给后台:而后台接收的数据格式是json的,所以需要把两个li里面的信息转化为以下格式的. {recieverName:小红,recieverPhone:12341234,recieverAddress:中国湖南},{recieverName:小明,recieverPhone:12345678,recieverAddress:中国上海} 代码如下: var recieverArr = []; //全局变量 var recieverMsg = {}; /

  • 利用Python爬虫爬取金融期货数据的案例分析

    目录 任务简介 解决步骤 代码实现 总结 大家好 我是政胤今天教大家爬取金融期货数据 任务简介 首先,客户原需求是获取https://hq.smm.cn/copper网站上的价格数据(注:获取的是网站上的公开数据),如下图所示: 如果以该网站为目标,则需要解决的问题是“登录”用户,再将价格解析为表格进行输出即可.但是,实际上客户核心目标是获取“沪铜CU2206”的历史价格,虽然该网站也有提供数据,但是需要“会员”才可以访问,而会员需要氪金...... 数据的价值!!! 鉴于,客户需求仅仅是“沪铜

  • python全面解析接口返回数据

    目录 解析接口返回数据 1.把json格式的数据 2.把 变成list的request 和expect一一对比 3.测试一下看是否正确 完整代码 python请求接口,抓取返回的数据 代码如下 解析接口返回数据 1.把json格式的数据 转换成单个{key,value}的形式,并把每个dict存入list def parse(self,data): #解析json格式的数据 ,生成list for key, value in data.items(): if isinstance(value,

  • python中scrapy处理项目数据的实例分析

    在我们处理完数据后,习惯把它放在原有的位置,但是这样也会出现一定的隐患.如果因为新数据的加入或者其他种种原因,当我们再次想要启用这个文件的时候,小伙伴们就会开始着急却怎么也翻不出来,似乎也没有其他更好的搜集办法,而重新进行数据整理显然是不现实的.下面我们就一起看看python爬虫中scrapy处理项目数据的方法吧. 1.拉取项目 $ git clone https://github.com/jonbakerfish/TweetScraper.git $ cd TweetScraper/ $ pi

  • JS对象与JSON格式数据相互转换

    目前的项目数据交互几乎都用JQuery,所以处理流程是:前端页面数据->JS对象->jQuery提交->python处理,另外一种就是倒过来.python肯定不能直接处理JS对象数据,所以要把JS对象转换成为python能处理的一种数据格式(通常是字典dict),同样,python取数据反馈到前端也要把字典数据转换成JS能处理的对象,这个中间转换数据格式通常就是JSON. 一.JS对象转换成为JSON 流程:读取前端页面数据,组装成为JS对象,并通过jQuery的$.post()方法传递

  • python爬取全国火锅店数量并可视化展示

    目录 一.网页分析 二.获取数据 1.导入相关库 2.请求数据 3.保存到excel 三.数据可视化 1.全国火锅店数量分布 2.四川火锅店数量分布 四.小结 前言: 今天教大家如何获取全国不同城市火锅店数量情况,并将这些数据进行可视化展示,以更加直观的方式去浏览全国不同省份.不同城市的火锅店分布情况. 本文数据来自于某度地图,通过python技术知识去获取数据并进行可视化. 一.网页分析 首先先看一下数据源,在某度地图里面按照下方操作,就可以请求到全国的火锅店情况(从下图来看没有显示出来,但是

  • php从数据库读取数据,并以json格式返回数据的方法

    php中,从数据库读取数据,并以json格式返回数据.具体方法如下: 第一步,定义相关变量 $servername = "localhost"; $username = "root"; $password = "root"; $mysqlname = "datatest"; $json = ''; $data = array(); class User { public $id; public $fname; public $

  • python 把数据 json格式输出的实例代码

    有个要求需要在python的标准输出时候显示json格式数据,如果缩进显示查看数据效果会很好,这里使用json的包会有很多操作 import json date = {u'versions': [{u'status': u'CURRENT', u'id': u'v2.3', u'links': [{u'href': u'http://controller:9292/v2/', u'rel': u'self'}]}, {u'status': u'SUPPORTED', u'id': u'v2.2'

随机推荐