python机器学习理论与实战(四)逻辑回归

从这节算是开始进入“正规”的机器学习了吧,之所以“正规”因为它开始要建立价值函数(cost function),接着优化价值函数求出权重,然后测试验证。这整套的流程是机器学习必经环节。今天要学习的话题是逻辑回归,逻辑回归也是一种有监督学习方法(supervised machine learning)。逻辑回归一般用来做预测,也可以用来做分类,预测是某个类别^.^!线性回归想比大家都不陌生了,y=kx+b,给定一堆数据点,拟合出k和b的值就行了,下次给定X时,就可以计算出y,这就是回归。而逻辑回归跟这个有点区别,它是一种非线性函数,拟合功能颇为强大,而且它是连续函数,可以对其求导,这点很重要,如果一个函数不可求导,那它在机器学习用起来很麻烦,早期的海维赛德(Heaviside)阶梯函数就因此被sigmoid函数取代,因为可导意味着我们可以很快找到其极值点,这就是优化方法的重要思想之一:利用求导,得到梯度,然后用梯度下降法更新参数。

下面来看看逻辑回归的sigmoid函数,如(图一)所示:

(图一)

(图一)中上图是sigmoid函数在定义域[-5,5] 上的形状,而下图是在定义域[-60,60]上的形状,由这两个图可以看出,它比较适合做二类的回归,因为严重两级分化。Sigmoid函数的如(公式一)所示:

(公式一)

现在有了二类回归函数模型,就可以把特征映射到这个模型上了,而且sigmoid函数的自变量只有一个Z,假设我们的特征为X=[x0,x1,x2…xn]。令,当给定大批的训练样本特征X时,我们只要找到合适的W=[w0,w1,w2…wn]来正确的把每个样本特征X映射到sigmoid函数的两级上,也就是说正确的完成了类别回归就行了,那么以后来个测试样本,只要和权重相乘后,带入sigmoid函数计算出的值就是预测值啦,很简单是吧。那怎么求权重W呢?

要计算W,就要进入优化求解阶段咯,用的方法是梯度下降法或者随机梯度下降法。说到梯度下降,梯度下降一般对什么求梯度呢?梯度是一个函数上升最快的方向,沿着梯度方向我们可以很快找到极值点。我们找什么极值?仔细想想,当然是找训练模型的误差极值,当模型预测值和训练样本给出的正确值之间的误差和最小时,模型参数就是我们要求的。当然误差最小有可能导致过拟合,这个以后再说。我们先建立模型训练误差价值函数(cost function),如(公式二)所示:

(公式二)

(公式二)中Y表示训练样本真实值,当J(theta)最小时的所得的theta就是我们要求的模型权重,可以看出J(theta)是个凸函数,得到的最小值也是全局最小。对其求导后得出梯度,如(公式三)所示:

(公式三)

由于我们是找极小值,而梯度方向是极大值方向,因此我们取负号,沿着负梯度方向更新参数,如(公式四)所示:

(公式四)

按照(公式四)的参数更新方法,当权重不再变化时,我们就宣称找到了极值点,此时的权重也是我们要求的,整个参数更新示意图如(图二)所示:

(图二)

原理到此为止逻辑回归基本就说完了,下面进入代码实战阶段:

from numpy import * 

def loadDataSet():
  dataMat = []; labelMat = []
  fr = open('testSet.txt')
  for line in fr.readlines():
    lineArr = line.strip().split()
    dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
    labelMat.append(int(lineArr[2]))
  return dataMat,labelMat 

def sigmoid(inX):
  return 1.0/(1+exp(-inX))

上面两个函数分别是加载训练集和定义sigmoid函数,都比较简单。下面发出梯度下降的代码:

def gradAscent(dataMatIn, classLabels):
  dataMatrix = mat(dataMatIn)       #convert to NumPy matrix
  labelMat = mat(classLabels).transpose() #convert to NumPy matrix
  m,n = shape(dataMatrix)
  alpha = 0.001
  maxCycles = 500
  weights = ones((n,1))
  for k in range(maxCycles):       #heavy on matrix operations
    h = sigmoid(dataMatrix*weights)   #matrix mult
    error = (labelMat - h)       #vector subtraction
    weights = weights + alpha * dataMatrix.transpose()* error #matrix mult
  return weights

梯度下降输入训练集和对应标签,接着就是迭代跟新参数,计算梯度,然后更新参数,注意倒数第二句就是按照(公式三)和(公式四)来更新参数。

为了直观的看到我们得到的权重是否正确的,我们把权重和样本打印出来,下面是相关打印代码:

def plotBestFit(weights):
  import matplotlib.pyplot as plt
  dataMat,labelMat=loadDataSet()
  dataArr = array(dataMat)
  n = shape(dataArr)[0]
  xcord1 = []; ycord1 = []
  xcord2 = []; ycord2 = []
  for i in range(n):
    if int(labelMat[i])== 1:
      xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
    else:
      xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
  fig = plt.figure()
  ax = fig.add_subplot(111)
  ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
  ax.scatter(xcord2, ycord2, s=30, c='green')
  x = arange(-3.0, 3.0, 0.1)
  y = (-weights[0]-weights[1]*x)/weights[2]
  ax.plot(x, y)
  plt.xlabel('X1'); plt.ylabel('X2');
  plt.show()

打印的效果图如(图三)所示:

(图三)

可以看出效果蛮不错的,小错误是难免的,如果训练集没有错误反而危险,说到这基本就说完了,但是考虑到这个方法对少量样本(几百的)还行,在实际中当遇到10亿数量级时,而且特征维数上千时,这种方法很恐怖,光计算梯度就要消耗大量时间,因此要使用随机梯度下降方法。随机梯度下降算法和梯度下降算法原理一样,只是计算梯度不再使用所有样本,而是使用一个或者一小批来计算梯度,这样可以减少计算代价,虽然权重更新的路径很曲折,但最终也会收敛的,如(图四)所示

(图四)

下面也发出随机梯度下降的代码:

def stocGradAscent1(dataMatrix, classLabels, numIter=150):
  m,n = shape(dataMatrix)
  weights = ones(n)  #initialize to all ones
  for j in range(numIter):
    dataIndex = range(m)
    for i in range(m):
      alpha = 4/(1.0+j+i)+0.0001  #apha decreases with iteration, does not
      randIndex = int(random.uniform(0,len(dataIndex)))#go to 0 because of the constant
      h = sigmoid(sum(dataMatrix[randIndex]*weights))
      error = classLabels[randIndex] - h
      weights = weights + alpha * error * dataMatrix[randIndex]
      del(dataIndex[randIndex])
  return weights

最后也给出一个分类的代码,只要把阈值设为0.5,大于0.5划为一类,小于0.5划为另一类就行了,代码如下:

def classifyVector(inX, weights):
  prob = sigmoid(sum(inX*weights))
  if prob > 0.5: return 1.0
  else: return 0.0

总结:

优点:计算量不高,容易实现,对现实数据也很容易描述

缺点:很容易欠拟合,精度可能也会不高

参考文献:

[1] machine learning in action. Peter Harrington

[2] machine learning.Andrew Ng

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

您可能感兴趣的文章:

  • python编写Logistic逻辑回归
  • python实现逻辑回归的方法示例
(0)

相关推荐

  • python实现逻辑回归的方法示例

    本文实现的原理很简单,优化方法是用的梯度下降.后面有测试结果. 先来看看实现的示例代码: # coding=utf-8 from math import exp import matplotlib.pyplot as plt import numpy as np from sklearn.datasets.samples_generator import make_blobs def sigmoid(num): ''' :param num: 待计算的x :return: sigmoid之后的数

  • python编写Logistic逻辑回归

    用一条直线对数据进行拟合的过程称为回归.逻辑回归分类的思想是:根据现有数据对分类边界线建立回归公式. 公式表示为: 一.梯度上升法 每次迭代所有的数据都参与计算. for 循环次数:         训练 代码如下: import numpy as np import matplotlib.pyplot as plt def loadData(): labelVec = [] dataMat = [] with open('testSet.txt') as f: for line in f.re

  • python机器学习理论与实战(六)支持向量机

    上节基本完成了SVM的理论推倒,寻找最大化间隔的目标最终转换成求解拉格朗日乘子变量alpha的求解问题,求出了alpha即可求解出SVM的权重W,有了权重也就有了最大间隔距离,但是其实上节我们有个假设:就是训练集是线性可分的,这样求出的alpha在[0,infinite].但是如果数据不是线性可分的呢?此时我们就要允许部分的样本可以越过分类器,这样优化的目标函数就可以不变,只要引入松弛变量即可,它表示错分类样本点的代价,分类正确时它等于0,当分类错误时,其中Tn表示样本的真实标签-1或者1,回顾

  • python机器学习理论与实战(四)逻辑回归

    从这节算是开始进入"正规"的机器学习了吧,之所以"正规"因为它开始要建立价值函数(cost function),接着优化价值函数求出权重,然后测试验证.这整套的流程是机器学习必经环节.今天要学习的话题是逻辑回归,逻辑回归也是一种有监督学习方法(supervised machine learning).逻辑回归一般用来做预测,也可以用来做分类,预测是某个类别^.^!线性回归想比大家都不陌生了,y=kx+b,给定一堆数据点,拟合出k和b的值就行了,下次给定X时,就可以计

  • python机器学习理论与实战(二)决策树

    决策树也是有监督机器学习方法. 电影<无耻混蛋>里有一幕游戏,在德军小酒馆里有几个人在玩20问题游戏,游戏规则是一个设迷者在纸牌中抽出一个目标(可以是人,也可以是物),而猜谜者可以提问题,设迷者只能回答是或者不是,在几个问题(最多二十个问题)之后,猜谜者通过逐步缩小范围就准确的找到了答案.这就类似于决策树的工作原理.(图一)是一个判断邮件类别的工作方式,可以看出判别方法很简单,基本都是阈值判断,关键是如何构建决策树,也就是如何训练一个决策树. (图一) 构建决策树的伪代码如下: Check i

  • python机器学习理论与实战(一)K近邻法

    机器学习分两大类,有监督学习(supervised learning)和无监督学习(unsupervised learning).有监督学习又可分两类:分类(classification.)和回归(regression),分类的任务就是把一个样本划为某个已知类别,每个样本的类别信息在训练时需要给定,比如人脸识别.行为识别.目标检测等都属于分类.回归的任务则是预测一个数值,比如给定房屋市场的数据(面积,位置等样本信息)来预测房价走势.而无监督学习也可以成两类:聚类(clustering)和密度估计

  • python机器学习理论与实战(五)支持向量机

    做机器学习的一定对支持向量机(support vector machine-SVM)颇为熟悉,因为在深度学习出现之前,SVM一直霸占着机器学习老大哥的位子.他的理论很优美,各种变种改进版本也很多,比如latent-SVM, structural-SVM等.这节先来看看SVM的理论吧,在(图一)中A图表示有两类的数据集,图B,C,D都提供了一个线性分类器来对数据进行分类?但是哪个效果好一些? (图一) 可能对这个数据集来说,三个的分类器都一样足够好了吧,但是其实不然,这个只是训练集,现实测试的样本

  • python机器基础逻辑回归与非监督学习

    目录 一.逻辑回归 1.模型的保存与加载 2.逻辑回归原理 ①逻辑回归的输入 ②sigmoid函数 ③逻辑回归的损失函数 ④逻辑回归特点 3.逻辑回归API 4.逻辑回归案例 ①案例概述 ②具体流程 5.逻辑回归总结 二.非监督学习 1.k-means聚类算法原理 2.k-means API 3.聚类性能评估 ①性能评估原理 ②性能评估API 一.逻辑回归 1.模型的保存与加载 模型训练好之后,可以直接保存,需要用到joblib库.保存的时候是pkl格式,二进制,通过dump方法保存.加载的时候

  • python sklearn库实现简单逻辑回归的实例代码

    Sklearn简介 Scikit-learn(sklearn)是机器学习中常用的第三方模块,对常用的机器学习方法进行了封装,包括回归(Regression).降维(Dimensionality Reduction).分类(Classfication).聚类(Clustering)等方法.当我们面临机器学习问题时,便可根据下图来选择相应的方法. Sklearn具有以下特点: 简单高效的数据挖掘和数据分析工具 让每个人能够在复杂环境中重复使用 建立NumPy.Scipy.MatPlotLib之上 代

  • Python机器学习之逻辑回归

    一.题目 1.主题:逻辑回归 2.描述:假设你是某大学招生主管,你想根据两次考试的结果决定每个申请者的录取 机会.现有以往申请者的历史数据,可以此作为训练集建立逻辑回归模型,并用 其预测某学生能否被大学录取. 3.数据集:文件 ex2data1.txt ,第一列.第二列分别表示申请者两次 考试的成绩,第三列表示录取结果(1 表示录取,0 表示不录取). 二.目的 1.理解逻辑回归模型 2.掌握逻辑回归模型的参数估计算法 三.平台 1.硬件:计算机 2.操作系统:WINDOWS 3.编程软件:Py

  • python人工智能深度学习入门逻辑回归限制

    目录 1.逻辑回归的限制 2.深度学习的引入 3.深度学习的计算方式 4.神经网络的损失函数 1.逻辑回归的限制 逻辑回归分类的时候,是把线性的函数输入进sigmoid函数进行转换,后进行分类,会在图上画出一条分类的直线,但像下图这种情况,无论怎么画,一条直线都不可能将其完全分开. 但假如我们可以对输入的特征进行一个转换,便有可能完美分类.比如: 创造一个新的特征x1:到(0,0)的距离,另一个x2:到(1,1)的距离.这样可以计算出四个点所对应的新特征,画到坐标系上如以下右图所示.这样转换之后

  • python实现梯度下降求解逻辑回归

    本文实例为大家分享了python实现梯度下降求解逻辑回归的具体代码,供大家参考,具体内容如下 对比线性回归理解逻辑回归,主要包含回归函数,似然函数,梯度下降求解及代码实现 线性回归 1.线性回归函数 似然函数的定义:给定联合样本值X下关于(未知)参数 的函数 似然函数:什么样的参数跟我们的数据组合后恰好是真实值 2.线性回归似然函数 对数似然: 3.线性回归目标函数 (误差的表达式,我们的目的就是使得真实值与预测值之前的误差最小) (导数为0取得极值,得到函数的参数) 逻辑回归 逻辑回归是在线性

随机推荐