java使用Dijkstra算法实现单源最短路径

单源最短路径问题,即在图中求出给定顶点到其它任一顶点的最短路径。在弄清楚如何求算单源最短路径问题之前,必须弄清楚最短路径的最优子结构性质。

一、最短路径的最优子结构性质

该性质描述为:如果P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,k和s是这条路径上的中间顶点,那么P(k,s)必定是从k到s的最短路径。下面证明该性质的正确性。

假设P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,则有P(i,j)=P(i,k)+P(k,s)+P(s,j)。而P(k,s)不是从k到s的最短距离,那么必定存在另一条从k到s的最短路径P'(k,s),那么P'(i,j)=P(i,k)+P'(k,s)+P(s,j)<P(i,j)。则与P(i,j)是从i到j的最短路径相矛盾。因此该性质得证。

二、Dijkstra算法

Dijkstra提出按各顶点与源点v间的路径长度的递增次序,生成到各顶点的最短路径的算法。既先求出长度最短的一条最短路径,再参照它求出长度次短的一条最短路径,依次类推,直到从源点v 到其它各顶点的最短路径全部求出为止。

对于下图:

运行结果:

从0出发到0的最短路径为:0-->0
从0出发到1的最短路径为:0-->1
从0出发到2的最短路径为:0-->3-->2
从0出发到3的最短路径为:0-->3
从0出发到4的最短路径为:0-->3-->2-->4
=====================================
从0出   发到0的最短距离为:0
从0出   发到1的最短距离为:10
从0出   发到2的最短距离为:50
从0出   发到3的最短距离为:30
从0出   发到4的最短距离为:60

=====================================

public class Dijkstra {
 static int M=10000;//(此路不通)
 public static void main(String[] args) {
  // TODO Auto-generated method stub
  int[][] weight1 = {//邻接矩阵
    {0,3,2000,7,M},
    {3,0,4,2,M},
    {M,4,0,5,4},
    {7,2,5,0,6},
    {M,M,4,6,0}
  };

  int[][] weight2 = {
    {0,10,M,30,100},
    {M,0,50,M,M},
    {M,M,0,M,10},
    {M,M,20,0,60},
    {M,M,M,M,0}
  };
  int start=0;
  int[] shortPath = Dijsktra(weight2,start);

  for(int i = 0;i < shortPath.length;i++)
    System.out.println("从"+start+"出发到"+i+"的最短距离为:"+shortPath[i]); 

 }

 public static int[] Dijsktra(int[][] weight,int start){
  //接受一个有向图的权重矩阵,和一个起点编号start(从0编号,顶点存在数组中)
  //返回一个int[] 数组,表示从start到它的最短路径长度
  int n = weight.length;  //顶点个数
  int[] shortPath = new int[n]; //存放从start到其他各点的最短路径
  String[] path=new String[n]; //存放从start到其他各点的最短路径的字符串表示
   for(int i=0;i<n;i++)
    path[i]=new String(start+"-->"+i);
  int[] visited = new int[n]; //标记当前该顶点的最短路径是否已经求出,1表示已求出

  //初始化,第一个顶点求出
  shortPath[start] = 0;
  visited[start] = 1;

  for(int count = 1;count <= n - 1;count++) //要加入n-1个顶点
  {

   int k = -1; //选出一个距离初始顶点start最近的未标记顶点
   int dmin = Integer.MAX_VALUE;
   for(int i = 0;i < n;i++)
   {
    if(visited[i] == 0 && weight[start][i] < dmin)
    {
     dmin = weight[start][i];

     k = i;
    } 

   }
   System.out.println("k="+k);

   //将新选出的顶点标记为已求出最短路径,且到start的最短路径就是dmin
   shortPath[k] = dmin;

   visited[k] = 1;

   //以k为中间点,修正从start到未访问各点的距离
   for(int i = 0;i < n;i++)
   {     // System.out.println("k="+k);
    if(visited[i] == 0 && weight[start][k] + weight[k][i] < weight[start][i]){
      weight[start][i] = weight[start][k] + weight[k][i];

      path[i]=path[k]+"-->"+i;

    }

   } 

  }
   for(int i=0;i<n;i++)
   System.out.println("从"+start+"出发到"+i+"的最短路径为:"+path[i]);
   System.out.println("=====================================");

  return shortPath;
 }
}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • java实现Dijkstra最短路径算法

    任务描述:在一个无向图中,获取起始节点到所有其他节点的最短路径描述 Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表方式 用OPEN,CLOSE表的方式,其采用的是贪心法的算法策略,大概过程如下: 1.声明两个集合,open和close,open用于存储未遍历的节点,close用来存储

  • Java实现Dijkstra输出最短路径的实例

    Java实现Dijkstra输出指定起点到终点的最短路径 前言: 最近在公司参加了一个比赛,其中涉及的一个问题,可以简化成如是描述:一个二维矩阵,每个点都有权重,需要找出从指定起点到终点的最短路径. 马上就想到了Dijkstra算法,所以又重新温故了一遍,这里给出Java的实现. 而输出最短路径的时候,在网上也进行了查阅,没发现什么标准的方法,于是在下面的实现中,我给出了一种能够想到的比较精简的方式:利用prev[]数组进行递归输出. package graph.dijsktra; import

  • java实现dijkstra最短路径寻路算法

    [引用]迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径. 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止. 基本思想 通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算). 此外,引进两个集合S和U.S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离). 初始时,S中只有起点s:U中是除s之外的顶点,并且U中顶点的路径是

  • Java实现Floyd算法求最短路径

    本文实例为大家分享了Java实现Floyd算法求最短路径的具体代码,供大家参考,具体内容如下 import java.io.FileInputStream; import java.io.FileNotFoundException; import java.util.Scanner; public class TestMainIO { /** * @param args * @throws FileNotFoundException */ public static void main(Stri

  • java实现单源最短路径

    本文采用java实现单源最短路径,并带有略微详细的注解,供大家参考,具体内容如下 package com.qf.greaph; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.Map; import java.util.Map.Entry; /** * @author jiayoo * 7 / 30 * Dijkstra最短路径算法是一种单源最短路径 *

  • Java实现利用广度优先遍历(BFS)计算最短路径的方法

    本文实例讲述了Java实现利用广度优先遍历(BFS)计算最短路径的方法.分享给大家供大家参考.具体分析如下: 我们用字符串代表图的顶点(vertax),来模拟学校中Classroom, Square, Toilet, Canteen, South Gate, North Gate几个地点,然后计算任意两点之间的最短路径. 如下图所示: 如,我想从North Gate去Canteen, 程序的输出结果应为: BFS: From [North Gate] to [Canteen]: North Ga

  • java实现最短路径算法之Dijkstra算法

    前言 Dijkstra算法是最短路径算法中为人熟知的一种,是单起点全路径算法.该算法被称为是"贪心算法"的成功典范.本文接下来将尝试以最通俗的语言来介绍这个伟大的算法,并赋予java实现代码. 一.知识准备: 1.表示图的数据结构 用于存储图的数据结构有多种,本算法中笔者使用的是邻接矩阵. 图的邻接矩阵存储方式是用两个数组来表示图.一个一维数组存储图中顶点信息,一个二维数组(邻接矩阵)存储图中的边或弧的信息. 设图G有n个顶点,则邻接矩阵是一个n*n的方阵,定义为: 从上面可以看出,无

  • java使用Dijkstra算法实现单源最短路径

    单源最短路径问题,即在图中求出给定顶点到其它任一顶点的最短路径.在弄清楚如何求算单源最短路径问题之前,必须弄清楚最短路径的最优子结构性质. 一.最短路径的最优子结构性质 该性质描述为:如果P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,k和s是这条路径上的中间顶点,那么P(k,s)必定是从k到s的最短路径.下面证明该性质的正确性. 假设P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,则有P(i,j)=P(i,k)+P(k,s)+P(s,

  • Java利用Dijkstra算法求解拓扑关系最短路径

    目录 算法简介 代码实现思路 算法思想 代码示例 算法简介 迪杰斯特拉算法(Dijkstra)是由荷兰计算机科学迪家迪杰斯特拉于1959年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点最短路劲算法,解决的是有权图中最短路径问题.迪杰斯特拉算法主要特点是从起始点开始,采用贪心算法的策略,每次遍历到始点距离最近且未访问过的顶点的邻接节点,直到扩展到终点为止. 代码实现思路 1.先初始化源节点(起始点)到其他各个拓扑节点的最短距离,可以用map存放,key为节点,value为节点到源节点的距

  • C++计算任意权值的单源最短路径(Bellman-Ford)

    本文实例为大家分享了C++计算任意权值单源最短路径的具体代码,供大家参考,具体内容如下 一.有Dijkstra算法求最短路径了,为什么还要用Bellman-Ford算法 Dijkstra算法不适合用于带有负权值的有向图. 如下图: 用Dijkstra算法求顶点0到各个顶点的最短路径: (1)首先,把顶点0添加到已访问顶点集合S中,选取权值最小的邻边<0, 2>,权值为5 记录顶点2的最短路径为:dist[2]=5, path[2]=0,把顶点2添加到集合S中. 顶点2,没有邻边(从顶点2出发,

  • Java实现Dijkstra算法的示例代码

    目录 一 问题描述 二 实现 三 测试 一 问题描述 小明为位置1,求他到其他各顶点的距离. 二 实现 package graph.dijkstra; import java.util.Scanner; import java.util.Stack; public class Dijkstra { static final int MaxVnum = 100; // 顶点数最大值 static final int INF = 0x3f3f3f3f; //无穷大 static final int

  • java实现Dijkstra算法

    本文实例为大家分享了java实现Dijkstra算法的具体代码,供大家参考,具体内容如下 1 问题描述 何为Dijkstra算法? Dijkstra算法功能:给出加权连通图中一个顶点,称之为起点,找出起点到其它所有顶点之间的最短距离. Dijkstra算法思想:采用贪心法思想,进行n-1次查找(PS:n为加权连通图的顶点总个数,除去起点,则剩下n-1个顶点),第一次进行查找,找出距离起点最近的一个顶点,标记为已遍历:下一次进行查找时,从未被遍历中的顶点寻找距离起点最近的一个顶点, 标记为已遍历:

  • Java数据结构与算法之单链表深入理解

    目录 一.单链表(Linked List)简介 二.单链表的各种操作 1.单链表的创建和遍历 2.单链表的按顺序插入节点 以及节点的修改 3.单链表节点的删除 4.以上单链表操作的代码实现 (通过一个实例应用) 三.单链表常见面试题 1.求单链表中节点的个数 2.查找单链表中的倒数第K个节点[新浪面试题] 3.单链表的反转[腾讯面试题,有点难度] 4.从尾到头打印单链表 一.单链表(Linked List)简介 二.单链表的各种操作 1.单链表的创建和遍历 2.单链表的按顺序插入节点 以及节点的

  • Java基于Dijkstra算法实现校园导游程序

    本文实例为大家分享了Dijkstra算法实现校园导游程序的具体代码,供大家参考,具体内容如下 应用设计性实验 1.问题描述 校网导游程序: 一个校园有若干景点,如正校门.人工湖.磁悬浮列车实验室.樱花大道.图书馆.体育场体育馆和礼堂等.实现一个为来访客 人提供信息在询服务的程序,如查询景点的详细信息,查询两个景点之间的一条最短路径. 2.实验要求 (1)设计你所在学校的校园平面图,所含景点不少于10个.(2)来访客人可以输人任一个景点的名称,查询景点的详细信息.(3)来访客人可以输人任何两个景点

  • JS使用Dijkstra算法求解最短路径

    一.Dijkstra算法的思路 Dijkstra算法是针对单源点求最短路径的算法. 其主要思路如下: 1. 将顶点分为两部分:已经知道当前最短路径的顶点集合Q和无法到达顶点集合R. 2. 定义一个距离数组(distance)记录源点到各顶点的距离,下标表示顶点,元素值为距离.源点(start)到自身的距离为0,源点无法到达的顶点的距离就是一个大数(比如Infinity). 3. 以距离数组中值为非Infinity的顶点V为中转跳点,假设V跳转至顶点W的距离加上顶点V至源点的距离还小于顶点W至源点

  • Java利用Dijkstra和Floyd分别求取图的最短路径

    目录 1 最短路径的概述 2 杰斯特拉(Dijkstra)算法 2.1 原理 2.2 案例分析 3 弗洛伊德(Floyd)算法 3.1 原理 3.2 案例分析 4 邻接矩阵加权图实现 5 邻接表加权图实现 本文详细介绍了图的最短路径的概念,然后介绍了求最短路径的两种算法:Dijkstra算法和Floyd算法的原理,最后提供了基于邻接矩阵和邻接表的图对两种算法的Java实现. 阅读本文需要一定的图的基础,如果对于图不是太明白的可以看看这篇文章:Java数据结构之图的原理与实现. 1 最短路径的概述

随机推荐