python实战之实现excel读取、统计、写入的示例讲解

背景

图像领域内的一个国内会议快要召开了,要发各种邀请邮件,之后要录入、统计邮件回复(参会还是不参会等)。如此重要的任务,老师就托付给我了。ps: 统计回复邮件的时候,能知道谁参会或谁不参会。

而我主要的任务,除了录入邮件回复,就是统计理事和普通会员的参会情况了(参会的、不参会的、没回复的)。录入邮件回复信息没办法只能人工操作,但如果统计也要人工的话,那工作量就太大了(比如在上百人的列表中搜索另外上百人在不在此列表中!!),于是就想到了用python来帮忙,花两天时间不断修改,写了6个版本。。。

摘要

version_1 基本实现了excel读取、统计、显示功能,但问题也有不少,像显示出来后还要自已复制、粘贴到excel表,而且set中还有nan这样的bug。

version_2 相比较version_1而言,此版本用set代替list,可以自动去重。

version_3 解决了set中出现nan的bug,而且还加入的excel写入的功能,但一次只能写入一张表,所以要运行两次才能写入两张表(sheet)。

version_4 的改进在于将version_3中写入两张表格的操作,集成在一个程序里,只需要运行一次便可写入两张表,但也总是会写入两张表,万一你只想写入一张表呢??

version_5 相对之前版本的最大改进在于将程序模块化,更具可读性了; 对修复set中出现nan的方法也进行了改进和简化; 而且可以自由控制写入多少张表了。

version_final 相比较version_5,修复了一个bug,之前需要先验知识,现在更通用一点(prep函数取代了set2list函数)。

version_1

基本实现了excel读取、统计、显示功能,但问题也有不少,像显示出来后还要自已复制、粘贴到excel表,而且set中还有nan这样的值。

#version_1
import os
import numpy as np
import pandas as pd
os.chdir('C:\\Users\\dell\\Desktop\\0711任务')
print(os.getcwd())
data = pd.read_excel('for_python.xlsx','Sheet2')
return_set = set(data['回执名单'])
demand_set = set(data['理事名单'])
answer_list = []
unanswer_list = []
for each in demand_set:
 if each in return_set:
 answer_list.append(each)
 else:
 unanswer_list.append(each)
notattend_set = set(data['回执名单'][-15:])
nt = []
for each in notattend_set:
 if each in answer_list:
 nt.append(each)
def disp(ll, cap, num = True):
 print(cap)
 if num:
 for i, each in enumerate(ll):
  print(i+1,each)
 else:
 for each in enumerate(ll):
  print(each)
disp(answer_list,'\n理事回执名单')
disp(unanswer_list,'\n理事未回执名单')
disp(nt,'\n理事回执说不参加名单')

version_2

相比较上一个版本,此版本用set代替list,可以自动去重。

#version_2
import os
import numpy as np
import pandas as pd
os.chdir('C:\\Users\\dell\\Desktop\\0711任务')
print(os.getcwd())
data = pd.read_excel('for_python.xlsx','Sheet2')
return_set = set(data['回执名单'])
demand_set = set(data['理事名单'])
answer_set = set([]) #理事回执名单
unanswer_set = set([]) #理事未回执名单
for each in demand_set:
 if each in return_set:
 answer_set.add(each)
 else:
 unanswer_set.add(each)
notattend_set = set(data['回执名单'][-17:])
nt = set([]) #理事回执说不参加名单
for each in notattend_set:
 if each in answer_set:
 nt.add(each)
ans_att_set = answer_set - nt #理事回执参加名单
def disp(ss, cap, num = False):
 print(cap)
 if num:
 for i, each in enumerate(ss):
  print(i+1,each)
 else:
 for each in ss:
  print(each)
#disp(answer_set,'\n理事回执名单')
disp(ans_att_set,'\n理事回执说参加名单')
disp(nt,'\n理事回执说不参加名单')
disp(unanswer_set,'\n理事未回执名单')
print(len(ans_att_set),len(nt),len(unanswer_set))

version_3

此版本解决了set中出现nan的bug,而且还加入的excel写入的功能,但一次只能写入一张表,所以要运行两次才能写入两张表(sheet)。

step_1

import os
import numpy as np
import pandas as pd
os.chdir('C:\\Users\\dell\\Desktop')
print('work_directory: ', os.getcwd())
data = pd.read_excel('理事与会员名单.xlsx','理事与会员名单')
#1.载入excel,得到三个名单
ans_attend_set = set(data['回执参加']) #回执参会名单
N = len(ans_attend_set)
ans_notatt_idx = [i for i in range(N) if type(data['回执不参加'][i]) == np.float][0]
ans_notatt_set = set(data['回执不参加'][:ans_notatt_idx])#回执不参会名单
concil_idx = [i for i in range(N) if type(data['理事名单'][i]) == np.float][0]
concil_set = set(data['理事名单'][:concil_idx])  #理事名单
#2.统计理事参会情况
concil_attend_set = set([]) #理事回执参会名单
concil_notatt_set = set([]) #理事回执不参会名单
concil_notans_set = set([]) #理事未回执名单
for each in concil_set:
 if each in ans_attend_set:
 concil_attend_set.add(each)
 elif each in ans_notatt_set:
 concil_notatt_set.add(each)
 else:
 concil_notans_set.add(each)
#3. 显示结果
def disp(ss, cap, num = True):
 #ss: 名单集合
 #cap: 开头描述
 print(cap,'({})'.format(len(ss)))
 for i in range(np.ceil(len(ss)/5).astype(int)):
 pre = i * 5
 nex = (i+1) * 5
 #调整显示格式
 dd = ''
 for each in list(ss)[pre:nex]:
  if len(each) == 2:
  dd = dd + ' ' + each
  elif len(each) == 3:
  dd = dd + ' ' + each
  else:
  dd = dd + '' + each
 print('{:3.0f} -{:3.0f} {}'.format(i*5+1,(i+1)*5,dd))
disp(concil_attend_set,'\n参会理事')
disp(concil_notatt_set,'\n不参会理事')
disp(concil_notans_set,'\n未回执理事')
#4. 将理事参会情况,写入excel
df = pd.DataFrame(list(concil_attend_set),columns = ['参会理事'])
df['']=pd.DataFrame([''])
df['序号1'] = pd.DataFrame(np.arange(len(concil_notatt_set))+1)
df['不参会理事'] = pd.DataFrame(list(concil_notatt_set))
df['_']=pd.DataFrame([''])
df['序号2'] = pd.DataFrame(np.arange(len(concil_notans_set))+1)
df['未回执理事'] = pd.DataFrame(list(concil_notans_set))
df.index = df.index + 1
df.to_excel('理事和会员回执统计.xlsx', sheet_name='理事回执统计')
print('\n\n写入excel成功~~')

step_2

import os
import numpy as np
import pandas as pd
os.chdir('C:\\Users\\dell\\Desktop')
print('work_directory: ', os.getcwd())
data = pd.read_excel('理事与会员名单.xlsx','理事与会员名单')
#1.载入excel,得到三个名单
ans_attend_set = set(data['回执参加']) #回执参会名单
N = len(ans_attend_set)
ans_notatt_idx = [i for i in range(N) if type(data['回执不参加'][i]) == np.float][0]
ans_notatt_set = set(data['回执不参加'][:ans_notatt_idx])#回执不参会名单
mem_idx = [i for i in range(N) if type(data['被推荐人'][i]) == np.float][0]
mem_set = set(data['被推荐人'][:mem_idx])  #被推荐为会员代表名单
#2.统计会员参会情况
mem_attend_set = set([]) #回执参会会员
mem_notatt_set = set([]) #回执不参会会员
mem_notans_set = set([]) #未回执会员
for each in mem_set:
 if each in ans_attend_set:
 mem_attend_set.add(each)
 elif each in ans_notatt_set:
 mem_notatt_set.add(each)
 else:
 mem_notans_set.add(each)
#3. 显示结果
def disp(ss, cap, num = True):
 #ss: 名单集合
 #cap: 开头描述
 print(cap,'({})'.format(len(ss)))
 for i in range(np.ceil(len(ss)/5).astype(int)):
 pre = i * 5
 nex = (i+1) * 5
 #调整显示格式
 dd = ''
 for each in list(ss)[pre:nex]:
  if len(each) == 2:
  dd = dd + ' ' + each
  elif len(each) == 3:
  dd = dd + ' ' + each
  else:
  dd = dd + '' + each
 print('{:3.0f} -{:3.0f} {}'.format(i*5+1,(i+1)*5,dd))
disp(mem_attend_set,'\n参会会员')
disp(mem_notatt_set,'\n不参会会员')
disp(mem_notans_set,'\n未回执会员')
#4. 将会员参会情况,写入excel
if len(mem_attend_set) > len(mem_notans_set):
 print('#1')
 L = len(mem_attend_set)
 mem_notans_list = list(mem_notans_set)
 mem_notans_list.extend([''] * (L - len(mem_notans_set)))
 mem_attend_list = list(mem_attend_set)
else:
 print('#2')
 L = len(mem_notans_set)
 mem_attend_list = list(mem_attend_set)
 mem_attend_list.extend([''] * (L - len(mem_attend_set)))
 mem_notans_list = list(mem_notans_set)
df = pd.DataFrame(mem_attend_list,columns = ['参会会员'])
df['']=pd.DataFrame([''])
if len(mem_notatt_set) == 0:
 df['序号1'] = np.NaN
 df['不参会会员'] = np.NaN
else:
 df['序号1'] = pd.DataFrame(np.arange(len(mem_notatt_set))+1)
 df['不参会会员'] = pd.DataFrame(list(mem_notatt_set))
df['_']=pd.DataFrame([''])
df['序号2'] = pd.DataFrame(np.arange(len(mem_notans_set))+1)
df['未回执会员'] = pd.DataFrame(mem_notans_list)
df.index = df.index + 1
df0 = pd.read_excel('理事和会员回执统计.xlsx',sheet_name='理事回执统计')
writer = pd.ExcelWriter('理事和会员回执统计.xlsx')
df0.to_excel(writer, sheet_name='理事回执统计')
df.to_excel(writer, sheet_name='会员回执统计')
writer.save()
print('\n\n写入excel成功~~')

version_4

version_4的改进在于将version_3中写入两张表格的操作,集成在一个程序里,只需要运行一次便可写入两张表,也总是会写入两张表。问题是要是你只想写入一张表呢??

import os
import numpy as np
import pandas as pd
os.chdir('C:\\Users\\dell\\Desktop')
print('work_directory: ', os.getcwd())
loadfile_sheet = ['理事与会员名单.xlsx','理事与会员名单']
columns = ['回执参加','回执不参加','理事','会员']
savefile_sheet = ['理事和会员回执统计.xlsx','理事回执统计','会员回执统计']
display = [1,1]
def main(loadfile_sheet,columns,savefile_sheet,display):
 #1. 载入excel,得到名单
 data = pd.read_excel(loadfile_sheet[0],loadfile_sheet[1])
 def first_nan_index(pd):
 for i, each in enumerate(pd):
  if type(each) == np.float:
  return i
 return i
 idx = first_nan_index(data[columns[0]])
 ans_attend_set = set(data[columns[0]][:idx])#回执参会名单
 idx = first_nan_index(data[columns[1]])
 ans_notatt_set = set(data[columns[1]][:idx])#回执不参会名单
 idx = first_nan_index(data[columns[2]])
 concil_set = set(data[columns[2]][:idx])#理事名单
 idx = first_nan_index(data[columns[3]])
 mem_set = set(data[columns[3]][:idx])#会员名单
 #2. 统计参会情况
 concil_attend_set = set([]) #回执参会理事
 concil_notatt_set = set([]) #回执不参会理事
 concil_notans_set = set([]) #未回执理事
 for each in concil_set:
 if each in ans_attend_set:
  concil_attend_set.add(each)
 elif each in ans_notatt_set:
  concil_notatt_set.add(each)
 else:
  concil_notans_set.add(each)
 mem_attend_set = set([]) #回执参会会员
 mem_notatt_set = set([]) #回执不参会会员
 mem_notans_set = set([]) #未回执会员
 for each in mem_set:
 if each in ans_attend_set:
  mem_attend_set.add(each)
 elif each in ans_notatt_set:
  mem_notatt_set.add(each)
 else:
  mem_notans_set.add(each)
 #3. 是否显示中间结果
 def disp(ss, cap, num = True):
 #ss: 名单集合
 #cap: 开头描述
 print(cap,'({})'.format(len(ss)))
 for i in range(np.ceil(len(ss)/5).astype(int)):
  pre = i * 5
  nex = (i+1) * 5
  #调整显示格式
  dd = ''
  for each in list(ss)[pre:nex]:
  if len(each) == 2:
   dd = dd + ' ' + each
  elif len(each) == 3:
   dd = dd + ' ' + each
  else:
   dd = dd + '' + each
  print('{:3.0f} -{:3.0f} {}'.format(i*5+1,(i+1)*5,dd))
 if display[0]:
 disp(concil_attend_set,'\n参会理事')
 disp(concil_notatt_set,'\n不参会理事')
 disp(concil_notans_set,'\n未回执理事')
 if display[1]:
 disp(mem_attend_set,'\n参会会员')
 disp(mem_notatt_set,'\n不参会会员')
 disp(mem_notans_set,'\n未回执会员')
 #4. 写入excel
 def trans_pd(df,ss,cap,i=1):
 if len(ss) == 0:
  df['序号{}'.format(i)] = np.NaN
  df[cap] = np.NaN
 else:
  df['序号{}'.format(i)] = pd.DataFrame(np.arange(len(ss))+1)
  df[cap] = pd.DataFrame(list(ss))
 df['_'*i]=pd.DataFrame([''])
 return df
 def set2list(mem_attend_set,mem_notans_set):
 if len(mem_attend_set) > len(mem_notans_set):
  L = len(mem_attend_set)
  mem_notans_list = list(mem_notans_set)
  mem_notans_list.extend([''] * (L - len(mem_notans_set)))
  mem_attend_list = list(mem_attend_set)
 else:
  L = len(mem_notans_set)
  mem_attend_list = list(mem_attend_set)
  mem_attend_list.extend([''] * (L - len(mem_attend_set)))
  mem_notans_list = list(mem_notans_set)
 return mem_attend_list,mem_notans_list
 mem_attend_list, mem_notans_list = set2list(mem_attend_set, mem_notans_set)
 df1 = pd.DataFrame(mem_attend_list,columns = ['参会会员'])
 df1['']=pd.DataFrame([''])
 df1 = trans_pd(df1,mem_notatt_set,'不参会会员')
 df1 = trans_pd(df1,mem_notans_set,'未回执会员',2)
 df1.index = df1.index + 1
 concil_attend_list, concil_notans_list = set2list(concil_attend_set, concil_notans_set)
 df2 = pd.DataFrame(concil_attend_list,columns = ['参会理事'])
 df2['']=pd.DataFrame([''])
 df2 = trans_pd(df2,concil_notatt_set,'不参会理事')
 df2 = trans_pd(df2,concil_notans_list,'未回执理事',2)
 df2.index = df2.index + 1
 writer = pd.ExcelWriter(savefile_sheet[0])
 df2.to_excel(writer, sheet_name=savefile_sheet[1])
 df1.to_excel(writer, sheet_name=savefile_sheet[2])
 writer.save()
 print('\n\n写入excel成功~~')
if __name__ == '__main__':
 main(loadfile_sheet,columns,savefile_sheet,display)

version_5

version_5对修复set中出现nan的方法进行了改进和简化; 而且将程序模块化,更具可读性; 可以自由控制写入多少张表了。

import os
import numpy as np
import pandas as pd
os.chdir('C:\\Users\\dell\\Desktop')
print('work_directory: ', os.getcwd())
loadfile_sheet = ['理事与会员名单.xlsx','理事与会员名单']
common_columns = ['回执参加','回执不参加']
concerned_columns = ['理事','会员']
disp_columns = ['参会','不参会','未回执']
savefile_sheet = ['理事和会员回执统计.xlsx','理事回执统计','会员回执统计']
def disp(ss, cap, num = True):
 #ss: 名单集合
 #cap: 开头描述
 print(cap,'({})'.format(len(ss)))
 for i in range(np.ceil(len(ss)/5).astype(int)):
 pre = i * 5
 nex = (i+1) * 5
 #调整显示格式
 dd = ''
 for each in list(ss)[pre:nex]:
  if len(each) == 2:
  dd = dd + ' ' + each
  elif len(each) == 3:
  dd = dd + ' ' + each
  else:
  dd = dd + '' + each
 print('{:3.0f} -{:3.0f} {}'.format(i*5+1,(i+1)*5,dd))
def trans_pd(df,ss,cap,i=1):
 df['_'*i]=pd.DataFrame([''])
 if len(ss) == 0:
 df['序号{}'.format(i)] = np.NaN
 df[cap] = np.NaN
 else:
 df['序号{}'.format(i)] = pd.DataFrame(np.arange(len(ss))+1)
 df[cap] = pd.DataFrame(list(ss))
 return df
def set2list(ss1,ss2):
 if len(ss1) > len(ss2):
 L = len(ss1)
 ss2_list = list(ss2)
 ss2_list.extend([''] * (L - len(ss2)))
 ss1_list = list(ss1)
 else:
 L = len(ss2)
 ss1_list = list(ss1)
 ss1_list.extend([''] * (L - len(ss1)))
 ss2_list = list(ss2)
 return ss1_list,ss2_list
def get_df(loadfile_sheet,common_columns,concerned_column,disp_columns, display = True):
 #1. 载入excel
 data = pd.read_excel(loadfile_sheet[0],loadfile_sheet[1])
 common_set1 = set(data[common_columns[0]])
 common_set1.discard(np.NaN)
 common_set2 = set(data[common_columns[1]])
 common_set2.discard(np.NaN)
 concerned_set = set(data[concerned_column])
 concerned_set.discard(np.NaN)
 #2. 统计
 concerned_in_set_1 = set([])
 concerned_in_set_2 = set([])
 concerned_in_no_set = set([])
 for each in concerned_set:
 if each in common_set1:
  concerned_in_set_1.add(each)
 elif each in common_set2:
  concerned_in_set_2.add(each)
 else:
  concerned_in_no_set.add(each)
 #3. 显示
 if display:
 disp(concerned_in_set_1,'\n'+disp_columns[0]+concerned_column)
 disp(concerned_in_set_2,'\n'+disp_columns[1]+concerned_column)
 disp(concerned_in_no_set,'\n'+disp_columns[2]+concerned_column)
 #4. 返回DataFrame
 concerned_in_set_1_list, concerned_in_set_2_list = set2list(concerned_in_set_1, concerned_in_no_set)
 df = pd.DataFrame(concerned_in_set_1_list,columns = [disp_columns[0]])
 df = trans_pd(df,concerned_in_set_2,disp_columns[1])
 df = trans_pd(df,concerned_in_no_set,disp_columns[2],2)
 df.index = df.index + 1
 return df
def save2excel(df, concerned_column, savefile_sheet):
 L = len(savefile_sheet) - 1
 idx = 0
 for i in np.arange(L)+1:
 if concerned_column in savefile_sheet[i]:
  idx = i
  break
 if idx != 0:
 names = locals()
 for i in np.arange(L)+1:
  if i != idx:
  names['df%s' % i] = pd.read_excel(savefile_sheet[0], sheet_name=savefile_sheet[i])
 writer = pd.ExcelWriter(savefile_sheet[0])
 for i in np.arange(L)+1:
  if i != idx:
  names['df%s' % i].to_excel(writer, sheet_name=savefile_sheet[i])
  else:
  df.to_excel(writer, sheet_name=savefile_sheet[i])
 writer.save()
 else:
 names = locals()
 for i in np.arange(L)+1:
  names['df%s' % i] = pd.read_excel(savefile_sheet[0], sheet_name=savefile_sheet[i])
 writer = pd.ExcelWriter(savefile_sheet[0])
 for i in np.arange(L)+1:
  names['df%s' % i].to_excel(writer, sheet_name=savefile_sheet[i])
 df.to_excel(writer, sheet_name=concerned_column)
 writer.save()
 print('writing success')
if __name__ == '__main__':
 for concerned_column in concerned_columns:
 df = get_df(loadfile_sheet,common_columns,
   concerned_column,disp_columns, display = True)
 save2excel(df, concerned_column, savefile_sheet)

version_final

相比较version_5,修复了一个bug,之前需要先验知识,现在更通用一点(prep函数取代了set2list函数)。

import os
import numpy as np
import pandas as pd
os.chdir('C:\\Users\\dell\\Desktop')
print('work_directory: ', os.getcwd())
loadfile_sheet = ['理事与会员名单.xlsx','理事与会员名单']
common_columns = ['回执参加','回执不参加']
concerned_columns = ['理事','会员']
disp_columns = ['参会','不参会','未回执']
savefile_sheet = ['理事和会员回执统计.xlsx','理事回执统计','会员回执统计']
def disp(ss, cap, num = True):
 #功能:显示名单
 #ss : 名单集合
 #cap :开头描述
 print(cap,'({})'.format(len(ss)))
 for i in range(np.ceil(len(ss)/5).astype(int)):
 pre = i * 5
 nex = (i+1) * 5
 #调整显示格式
 dd = ''
 for each in list(ss)[pre:nex]:
  if len(each) == 2:
  dd = dd + ' ' + each
  elif len(each) == 3:
  dd = dd + ' ' + each
  else:
  dd = dd + '' + each
 print('{:3.0f} -{:3.0f} {}'.format(i*5+1,(i+1)*5,dd))
def trans_pd(df,ll,cap,i=1):
 #功能:生成三列--空列、序号列、数据列
 #df : DataFrame结构
 #ll : 列表
 #cap : 显示的列名
 #i : 控制空列的名字
 df['_'*i]=pd.DataFrame([''])
 if len(set(ll)) == 1:
 df['序号{}'.format(i)] = np.NaN
 df[cap] = np.NaN
 else:
 df['序号{}'.format(i)] = pd.DataFrame(np.arange(len(set(ll))-1)+1)
 df[cap] = pd.DataFrame(ll)
 return df
def prep(ss, N):
 #功能:预处理,生成列表,并补齐到长度N
 #ss : 集体
 #N :长度
 ll = list(ss)
 L = len(ll)
 ll.extend([np.NaN] * (N-L))
 return ll
def get_df(loadfile_sheet,common_columns,concerned_column,disp_columns, display = True):
 #1. 载入excel
 data = pd.read_excel(loadfile_sheet[0],loadfile_sheet[1])
 common_set1 = set(data[common_columns[0]])
 common_set2 = set(data[common_columns[1]])
 concerned_set = set(data[concerned_column])
 common_set1.discard(np.NaN)
 common_set2.discard(np.NaN)
 concerned_set.discard(np.NaN)
 #2. 统计
 concerned_in_set_1 = set([])
 concerned_in_set_2 = set([])
 concerned_in_no_set = set([])
 for each in concerned_set:
 if each in common_set1:
  concerned_in_set_1.add(each)
 elif each in common_set2:
  concerned_in_set_2.add(each)
 else:
  concerned_in_no_set.add(each)
 #3. 显示
 if display:
 disp(concerned_in_set_1,'\n'+disp_columns[0]+concerned_column)
 disp(concerned_in_set_2,'\n'+disp_columns[1]+concerned_column)
 disp(concerned_in_no_set,'\n'+disp_columns[2]+concerned_column)
 #4. 返回DataFrame
 N = np.max([len(concerned_in_set_1),len(concerned_in_set_2),len(concerned_in_no_set)])
 concerned_in_set_1_list = prep(concerned_in_set_1,N)
 concerned_in_set_2_list = prep(concerned_in_set_2,N)
 concerned_in_no_list = prep(concerned_in_no_set,N)
 df = pd.DataFrame(concerned_in_set_1_list,columns = [disp_columns[0]])
 df = trans_pd(df,concerned_in_set_2_list,disp_columns[1])
 df = trans_pd(df,concerned_in_no_list,disp_columns[2],2)
 df.index = df.index + 1
 return df
def save2excel(df, concerned_column, savefile_sheet):
 L = len(savefile_sheet) - 1
 idx = 0
 for i in np.arange(L)+1:
 if concerned_column in savefile_sheet[i]:
  idx = i
  break
 if idx != 0: #如果有对应sheet
 names = locals()
 for i in np.arange(L)+1:
  if i != idx:
  names['df%s' % i] = pd.read_excel(savefile_sheet[0], sheet_name=savefile_sheet[i])
 writer = pd.ExcelWriter(savefile_sheet[0])
 for i in np.arange(L)+1:
  if i != idx:
  names['df%s' % i].to_excel(writer, sheet_name=savefile_sheet[i])
  else:
  df.to_excel(writer, sheet_name=savefile_sheet[i])
 writer.save()
 else: #如果没有对应sheet,创建一个新sheet
 names = locals()
 for i in np.arange(L)+1:
  names['df%s' % i] = pd.read_excel(savefile_sheet[0], sheet_name=savefile_sheet[i])
 writer = pd.ExcelWriter(savefile_sheet[0])
 for i in np.arange(L)+1:
  names['df%s' % i].to_excel(writer, sheet_name=savefile_sheet[i])
 df.to_excel(writer, sheet_name=concerned_column)
 writer.save()
 print('writing success')
if __name__ == '__main__':
 for concerned_column in concerned_columns:
 df = get_df(loadfile_sheet,common_columns,
   concerned_column,disp_columns, display = True)
 save2excel(df, concerned_column, savefile_sheet)

以上这篇python实战之实现excel读取、统计、写入的示例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

您可能感兴趣的文章:

  • python实现excel读写数据
  • Python实现对excel文件列表值进行统计的方法
  • 用python实现简单EXCEL数据统计的实例
  • 用python读写excel的方法
  • Python读写Excel文件的实例
  • 基于python实现在excel中读取与生成随机数写入excel中
(0)

相关推荐

  • 用python读写excel的方法

    本文实例讲述了用python读写excel的方法.分享给大家供大家参考.具体如下: 最近需要从多个excel表里面用各种方式整理一些数据,虽然说原来用过java做这类事情,但是由于最近在学python,所以当然就决定用python尝试一下了.发现python果然简洁很多.这里简单记录一下.(由于是用到什么学什么,所以不算太深入,高手勿喷,欢迎指导) 一.读excel表 读excel要用到xlrd模块,官网安装(http://pypi.python.org/pypi/xlrd).然后就可以跟着里面

  • python实现excel读写数据

    本文实例为大家分享了python操作EXCEL的实例源码,供大家参考,具体内容如下 读EXCEL的操作:把excel的数据存储为字典类型 #coding=utf8 #导入读excel的操作库 import xlrd class GenExceptData(object): def __init__(self): try: self.dataDic={} #打开工作薄 self.wkbook= xlrd.open_workbook("Requirement.xls") #获取工作表&qu

  • Python读写Excel文件的实例

    最近由于经常要用到Excel,需要根据Excel表格中的内容对一些apk进行处理,手动处理很麻烦,于是决定写脚本来处理.首先贴出网上找来的读写Excel的脚本. 1.读取Excel(需要安装xlrd): #-*- coding: utf8 -*- import xlrd fname = "reflect.xls" bk = xlrd.open_workbook(fname) shxrange = range(bk.nsheets) try: sh = bk.sheet_by_name(

  • 用python实现简单EXCEL数据统计的实例

    任务: 用python时间简单的统计任务-统计男性和女性分别有多少人. 用到的物料:xlrd 它的作用-读取excel表数据 代码: import xlrd workbook = xlrd.open_workbook('demo.xlsx') #打开excel数据表 SheetList = workbook.sheet_names()#读取电子表到列表 SheetName = SheetList[0]#读取第一个电子表的名称 Sheet1 = workbook.sheet_by_index(0)

  • Python实现对excel文件列表值进行统计的方法

    本文实例讲述了Python实现对excel文件列表值进行统计的方法.分享给大家供大家参考.具体如下: #!/usr/bin/env python #coding=gbk #此PY用来统计一个execl文件中的特定一列的值的分类 import win32com.client filename=raw_input("请输入要统计文件的详细地址:") flag=0 #用于判断文件 名如果不带'日'就为 0 if '\xc8\xd5' in filename:flag=1 print 50*'

  • 基于python实现在excel中读取与生成随机数写入excel中

    具体要求是:在一份已知的excel表格中读取学生的学号与姓名,再将这些数据放到新的excel表中的第一列与第二列,最后再生成随机数作为学生的考试成绩. 首先要用到的数据库有:xlwt,xlrd,random这三个数据库. 命令如下: import xlwt import xlrd import random 现有一份表格内容如下图: 现在我们需要提取这其中的B1-C14. (提示:在对这份电子表格进行操作的时候,要使用到这个电子表格的地址,即表格的储存位置.) excel=xlrd.open_w

  • python实战之实现excel读取、统计、写入的示例讲解

    背景 图像领域内的一个国内会议快要召开了,要发各种邀请邮件,之后要录入.统计邮件回复(参会还是不参会等).如此重要的任务,老师就托付给我了.ps: 统计回复邮件的时候,能知道谁参会或谁不参会. 而我主要的任务,除了录入邮件回复,就是统计理事和普通会员的参会情况了(参会的.不参会的.没回复的).录入邮件回复信息没办法只能人工操作,但如果统计也要人工的话,那工作量就太大了(比如在上百人的列表中搜索另外上百人在不在此列表中!!),于是就想到了用python来帮忙,花两天时间不断修改,写了6个版本...

  • Python自动化办公之Excel数据的写入

    目录 Excel 写入 - xlsxwriter xlsxwriter 的安装 xlsxwriter 常用函数介绍 初始化 excel 对象 获取工作簿 小实战 上一章节我们学习了 excel 的读取模块 - xlrd ,今天章节将学习 excel 的写入模块 - xlsxwriter .通过该章节的学习,就可以自己主动生成 excel 文件了. Excel 写入 - xlsxwriter xlsxwriter 的安装 安装方式: pip install xlsxwriter 若安装不上或者安装

  • Python基于csv模块实现读取与写入csv数据的方法

    本文实例讲述了Python基于csv模块实现读取与写入csv数据的方法.分享给大家供大家参考,具体如下: 通过csv模块可以轻松读取格式为csv的文件,而且csv模块是python内置的,不需要下载就可以直接用. 一.准备csv文件 文件名是 e:\t.csv,文件内容: org_id,org_name,state,emp_id 1,销售1,'1',123 2,销售2,'0',321 3,销售3,'1',231 1,,'1',1234 二.读取csv数据 代码非常简单: # -*- coding

  • Python实战之单词打卡统计

    前言 观前提醒:因为是代码控制统计,所以操作每一个步骤都很重要,否则就会报错. 操作步骤 1.将在线编辑文档导入本地. 为了方便代码处理,将导出的excel表统一放在D盘直路径下,如果没懂,你可以查看文件属性,文件属性应该是这样: 2.打开excel表,将你要统计的那天的日期改为中文(这一步很重要,因为数字索引无法进行定位,所以要改,不改就用不了) 3.因为QQ的安全防范机制做的太好了,爬虫和抓包工具都无法获取QQ信息,所以我只能采用最原始的方法进行数据获取. 你想的没错,就是复制粘贴.用电脑打

  • 聊聊Python对CSV文件的读取与写入问题

    今天天气"刚刚好"(薛之谦么么哒),无聊的我翻到了一篇关于csv文件读取与写入的帖子,作为测试小白的我一直对python情有独钟,顿时心血来潮,决定小搞他一下,分享给那些需要的小白,对于python大神们来说,简直就是小儿科,对于我这种测试小白,看到代码就如同打了鸡血一样,恩恩,好东西,好东西! csv文件的读取: 前期工作:在定义的py文件里边创建一个excel文件,并另存为csv文件,放入三行数据,我这里是姓名+年龄(可以自己随意写) 首先我们要在python环境里导入csv板块(

  • 使用Python和xlwt向Excel文件中写入中文的实例

    Python等工具确实是不错的工具,但是有时候不管是基础的Python还是Python的软件包都让我觉得对中文不是很亲近.时不时地遇到一点问题很正常,刚刚在写Excel文件的时候就又遇到了这样的问题. 为了能够说明情况,假设我想把当前文件夹中所有的文件名称全都写入到Excel文件中. 当前的目录信息如下: grey@DESKTOP-3T80NPQ:/mnt/e/01_workspace/01_docs/02_blog/2017年/08月$ ls -l total 1464 -rwxrwxrwx

  • 使用Python对Dicom文件进行读取与写入的实现

    Pydicom 单张影像的读取 使用 pydicom.dcmread() 函数进行单张影像的读取,返回一个pydicom.dataset.FileDataset对象. import os import pydicom # 调用本地的 dicom file folder_path = r"D:\Files\Data\Materials" file_name = "PA1_0001.dcm" file_path = os.path.join(folder_path,fi

  • 将python运行结果保存至本地文件中的示例讲解

    一.建立文件,保存数据 1.使用python中内置的open函数 打开txt文件 #mode 模式 #w 只能操作写入 r 只能读取 a 向文件追加 #w+ 可读可写 r+可读可写 a+可读可追加 #wb+写入进制数据 #w模式打开文件,如果而文件中有数据,再次写入内容,会把原来的覆盖掉 file_handle=open('1.txt',mode='w') 2.向文件中写入数据 2.1 write写入 #\n 换行符 file_handle.write('hello word 你好 \n') 2

  • Python调用Pandas实现Excel读取

    目录 开头先BB两句 操作过程 安装Python Pandas安装包 上手使用 创建Excel,写入数据 完整代码 开头先BB两句 基本上来说,每周五写的周报都是这个套路. 突然想用Python智能化办公,修改Excel表格. 先不考虑,合并单元格,修改表格样式的操作.就先做个简单的读写. 操作过程 安装Python 工欲善其事必先利其器,首先做好准备工作,开发环境必不可少. 直接官网下载安装包,我使用的是3.6.5版本.下载安装后,配置环境变量. 开发工具,我就直接用的vscode,安装了一个

  • 在Python程序中进行文件读取和写入操作的教程

    读写文件是最常见的IO操作.Python内置了读写文件的函数,用法和C是兼容的. 读写文件前,我们先必须了解一下,在磁盘上读写文件的功能都是由操作系统提供的,现代操作系统不允许普通的程序直接操作磁盘,所以,读写文件就是请求操作系统打开一个文件对象(通常称为文件描述符),然后,通过操作系统提供的接口从这个文件对象中读取数据(读文件),或者把数据写入这个文件对象(写文件). 读文件 要以读文件的模式打开一个文件对象,使用Python内置的open()函数,传入文件名和标示符: >>> f =

随机推荐