关于PyTorch源码解读之torchvision.models

PyTorch框架中有一个非常重要且好用的包:torchvision,该包主要由3个子包组成,分别是:torchvision.datasets、torchvision.models、torchvision.transforms。

这3个子包的具体介绍可以参考官网:

http://pytorch.org/docs/master/torchvision/index.html

具体代码可以参考github:

https://github.com/pytorch/vision/tree/master/torchvision

这篇博客介绍torchvision.models。torchvision.models这个包中包含alexnet、densenet、inception、resnet、squeezenet、vgg等常用的网络结构,并且提供了预训练模型,可以通过简单调用来读取网络结构和预训练模型。

使用例子:

import torchvision
model = torchvision.models.resnet50(pretrained=True)

这样就导入了resnet50的预训练模型了。如果只需要网络结构,不需要用预训练模型的参数来初始化,那么就是:

model = torchvision.models.resnet50(pretrained=False)

如果要导入densenet模型也是同样的道理,比如导入densenet169,且不需要是预训练的模型:

model = torchvision.models.densenet169(pretrained=False)

由于pretrained参数默认是False,所以等价于:

model = torchvision.models.densenet169()

不过为了代码清晰,最好还是加上参数赋值。

接下来以导入resnet50为例介绍具体导入模型时候的源码。运行model = torchvision.models.resnet50(pretrained=True)的时候,是通过models包下的resnet.py脚本进行的,源码如下:

首先是导入必要的库,其中model_zoo是和导入预训练模型相关的包,另外all变量定义了可以从外部import的函数名或类名。这也是前面为什么可以用torchvision.models.resnet50()来调用的原因。model_urls这个字典是预训练模型的下载地址。

import torch.nn as nn
import math
import torch.utils.model_zoo as model_zoo

__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
  'resnet152']

model_urls = {
 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}

接下来就是resnet50这个函数了,参数pretrained默认是False。首先model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)是构建网络结构,Bottleneck是另外一个构建bottleneck的类,在ResNet网络结构的构建中有很多重复的子结构,这些子结构就是通过Bottleneck类来构建的,后面会介绍。然后如果参数pretrained是True,那么就会通过model_zoo.py中的load_url函数根据model_urls字典下载或导入相应的预训练模型。最后通过调用model的load_state_dict方法用预训练的模型参数来初始化你构建的网络结构,这个方法就是PyTorch中通用的用一个模型的参数初始化另一个模型的层的操作。load_state_dict方法还有一个重要的参数是strict,该参数默认是True,表示预训练模型的层和你的网络结构层严格对应相等(比如层名和维度)。

def resnet50(pretrained=False, **kwargs):
 """Constructs a ResNet-50 model.

 Args:
 pretrained (bool): If True, returns a model pre-trained on ImageNet
 """
 model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
 if pretrained:
 model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
 return model

其他resnet18、resnet101等函数和resnet50基本类似,差别主要是在:

1、构建网络结构的时候block的参数不一样,比如resnet18中是[2, 2, 2, 2],resnet101中是[3, 4, 23, 3]。

2、调用的block类不一样,比如在resnet50、resnet101、resnet152中调用的是Bottleneck类,而在resnet18和resnet34中调用的是BasicBlock类,这两个类的区别主要是在residual结果中卷积层的数量不同,这个是和网络结构相关的,后面会详细介绍。

3、如果下载预训练模型的话,model_urls字典的键不一样,对应不同的预训练模型。因此接下来分别看看如何构建网络结构和如何导入预训练模型。

def resnet18(pretrained=False, **kwargs):
 """Constructs a ResNet-18 model.

 Args:
 pretrained (bool): If True, returns a model pre-trained on ImageNet
 """
 model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
 if pretrained:
 model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
 return model

def resnet101(pretrained=False, **kwargs):
 """Constructs a ResNet-101 model.

 Args:
 pretrained (bool): If True, returns a model pre-trained on ImageNet
 """
 model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
 if pretrained:
 model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
 return model

构建ResNet网络是通过ResNet这个类进行的。首先还是继承PyTorch中网络的基类:torch.nn.Module,其次主要的是重写初始化__init__和forward方法。在初始化__init__中主要是定义一些层的参数。forward方法中主要是定义数据在层之间的流动顺序,也就是层的连接顺序。另外还可以在类中定义其他私有方法用来模块化一些操作,比如这里的_make_layer方法是用来构建ResNet网络中的4个blocks。_make_layer方法的第一个输入block是Bottleneck或BasicBlock类,第二个输入是该blocks的输出channel,第三个输入是每个blocks中包含多少个residual子结构,因此layers这个列表就是前面resnet50的[3, 4, 6, 3]。

_make_layer方法中比较重要的两行代码是:1、layers.append(block(self.inplanes, planes, stride, downsample)),该部分是将每个blocks的第一个residual结构保存在layers列表中。2、 for i in range(1, blocks): layers.append(block(self.inplanes, planes)),该部分是将每个blocks的剩下residual 结构保存在layers列表中,这样就完成了一个blocks的构造。这两行代码中都是通过Bottleneck这个类来完成每个residual的构建,接下来介绍Bottleneck类。

class ResNet(nn.Module):

 def __init__(self, block, layers, num_classes=1000):
 self.inplanes = 64
 super(ResNet, self).__init__()
 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
    bias=False)
 self.bn1 = nn.BatchNorm2d(64)
 self.relu = nn.ReLU(inplace=True)
 self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
 self.layer1 = self._make_layer(block, 64, layers[0])
 self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
 self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
 self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
 self.avgpool = nn.AvgPool2d(7, stride=1)
 self.fc = nn.Linear(512 * block.expansion, num_classes)

 for m in self.modules():
  if isinstance(m, nn.Conv2d):
  n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
  m.weight.data.normal_(0, math.sqrt(2. / n))
  elif isinstance(m, nn.BatchNorm2d):
  m.weight.data.fill_(1)
  m.bias.data.zero_()

 def _make_layer(self, block, planes, blocks, stride=1):
 downsample = None
 if stride != 1 or self.inplanes != planes * block.expansion:
  downsample = nn.Sequential(
  nn.Conv2d(self.inplanes, planes * block.expansion,
    kernel_size=1, stride=stride, bias=False),
  nn.BatchNorm2d(planes * block.expansion),
  )

 layers = []
 layers.append(block(self.inplanes, planes, stride, downsample))
 self.inplanes = planes * block.expansion
 for i in range(1, blocks):
  layers.append(block(self.inplanes, planes))

 return nn.Sequential(*layers)

 def forward(self, x):
 x = self.conv1(x)
 x = self.bn1(x)
 x = self.relu(x)
 x = self.maxpool(x)

 x = self.layer1(x)
 x = self.layer2(x)
 x = self.layer3(x)
 x = self.layer4(x)

 x = self.avgpool(x)
 x = x.view(x.size(0), -1)
 x = self.fc(x)

 return x

从前面的ResNet类可以看出,在构造ResNet网络的时候,最重要的是Bottleneck这个类,因为ResNet是由residual结构组成的,而Bottleneck类就是完成residual结构的构建。同样Bottlenect还是继承了torch.nn.Module类,且重写了__init__和forward方法。从forward方法可以看出,bottleneck就是我们熟悉的3个主要的卷积层、BN层和激活层,最后的out += residual就是element-wise add的操作。

class Bottleneck(nn.Module):
 expansion = 4

 def __init__(self, inplanes, planes, stride=1, downsample=None):
 super(Bottleneck, self).__init__()
 self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
 self.bn1 = nn.BatchNorm2d(planes)
 self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
    padding=1, bias=False)
 self.bn2 = nn.BatchNorm2d(planes)
 self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
 self.bn3 = nn.BatchNorm2d(planes * 4)
 self.relu = nn.ReLU(inplace=True)
 self.downsample = downsample
 self.stride = stride

 def forward(self, x):
 residual = x

 out = self.conv1(x)
 out = self.bn1(out)
 out = self.relu(out)

 out = self.conv2(out)
 out = self.bn2(out)
 out = self.relu(out)

 out = self.conv3(out)
 out = self.bn3(out)

 if self.downsample is not None:
  residual = self.downsample(x)

 out += residual
 out = self.relu(out)

 return out

BasicBlock类和Bottleneck类类似,前者主要是用来构建ResNet18和ResNet34网络,因为这两个网络的residual结构只包含两个卷积层,没有Bottleneck类中的bottleneck概念。因此在该类中,第一个卷积层采用的是kernel_size=3的卷积,如conv3x3函数所示。

def conv3x3(in_planes, out_planes, stride=1):
 """3x3 convolution with padding"""
 return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
   padding=1, bias=False)

class BasicBlock(nn.Module):
 expansion = 1

 def __init__(self, inplanes, planes, stride=1, downsample=None):
 super(BasicBlock, self).__init__()
 self.conv1 = conv3x3(inplanes, planes, stride)
 self.bn1 = nn.BatchNorm2d(planes)
 self.relu = nn.ReLU(inplace=True)
 self.conv2 = conv3x3(planes, planes)
 self.bn2 = nn.BatchNorm2d(planes)
 self.downsample = downsample
 self.stride = stride

 def forward(self, x):
 residual = x

 out = self.conv1(x)
 out = self.bn1(out)
 out = self.relu(out)

 out = self.conv2(out)
 out = self.bn2(out)

 if self.downsample is not None:
  residual = self.downsample(x)

 out += residual
 out = self.relu(out)

 return out

介绍完如何构建网络,接下来就是如何获取预训练模型。前面提到这一行代码:if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])),主要就是通过model_zoo.py中的load_url函数根据model_urls字典导入相应的预训练模型,models_zoo.py脚本的github地址:

https://github.com/pytorch/pytorch/blob/master/torch/utils/model_zoo.py

load_url函数源码如下。

首先model_dir是下载下来的模型的保存地址,如果没有指定的话就会保存在项目的.torch目录下,最好指定。cached_file是保存模型的路径加上模型名称。接下来的 if not os.path.exists(cached_file)语句用来判断是否指定目录下已经存在要下载模型,如果已经存在,就直接调用torch.load接口导入模型,如果不存在,则从网上下载,下载是通过_download_url_to_file(url, cached_file, hash_prefix, progress=progress)进行的,不再细讲。重点在于模型导入是通过torch.load()接口来进行的,不管你的模型是从网上下载的还是本地已有的。

def load_url(url, model_dir=None, map_location=None, progress=True):
 r"""Loads the Torch serialized object at the given URL.

 If the object is already present in `model_dir`, it's deserialized and
 returned. The filename part of the URL should follow the naming convention
 ``filename-<sha256>.ext`` where ``<sha256>`` is the first eight or more
 digits of the SHA256 hash of the contents of the file. The hash is used to
 ensure unique names and to verify the contents of the file.

 The default value of `model_dir` is ``$TORCH_HOME/models`` where
 ``$TORCH_HOME`` defaults to ``~/.torch``. The default directory can be
 overriden with the ``$TORCH_MODEL_ZOO`` environment variable.

 Args:
 url (string): URL of the object to download
 model_dir (string, optional): directory in which to save the object
 map_location (optional): a function or a dict specifying how to remap storage locations (see torch.load)
 progress (bool, optional): whether or not to display a progress bar to stderr

 Example:
 >>> state_dict = torch.utils.model_zoo.load_url('https://s3.amazonaws.com/pytorch/models/resnet18-5c106cde.pth')

 """
 if model_dir is None:
 torch_home = os.path.expanduser(os.getenv('TORCH_HOME', '~/.torch'))
 model_dir = os.getenv('TORCH_MODEL_ZOO', os.path.join(torch_home, 'models'))
 if not os.path.exists(model_dir):
 os.makedirs(model_dir)
 parts = urlparse(url)
 filename = os.path.basename(parts.path)
 cached_file = os.path.join(model_dir, filename)
 if not os.path.exists(cached_file):
 sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
 hash_prefix = HASH_REGEX.search(filename).group(1)
 _download_url_to_file(url, cached_file, hash_prefix, progress=progress)
 return torch.load(cached_file, map_location=map_location)

以上这篇关于PyTorch源码解读之torchvision.models就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 使用pytorch进行图像的顺序读取方法

    产生此次实验的原因:当我使用pytorch进行神经网络的训练时,需要每次向CNN传入一组图像,并且这些图片的存放位置是在两个文件夹中: A文件夹:图片1a,图片2a,图片3a--图片1000a B文件夹:图片1b, 图片2b,图片3b--图片1000b 所以在每个循环里,我都希望能从A中取出图片Na,同时从B文件夹中取出对应的图片Nb. 测试一:通过pytorch官方文档中的dataloader搭配python中的迭代器iterator dataset = dset.ImageFolder( r

  • python PyTorch参数初始化和Finetune

    前言 这篇文章算是论坛PyTorch Forums关于参数初始化和finetune的总结,也是我在写代码中用的算是"最佳实践"吧.最后希望大家没事多逛逛论坛,有很多高质量的回答. 参数初始化 参数的初始化其实就是对参数赋值.而我们需要学习的参数其实都是Variable,它其实是对Tensor的封装,同时提供了data,grad等借口,这就意味着我们可以直接对这些参数进行操作赋值了.这就是PyTorch简洁高效所在. 所以我们可以进行如下操作进行初始化,当然其实有其他的方法,但是这种方法

  • PyTorch的深度学习入门之PyTorch安装和配置

    前言 深度神经网络是一种目前被广泛使用的工具,可以用于图像识别.分类,物体检测,机器翻译等等.深度学习(DeepLearning)是一种学习神经网络各种参数的方法.因此,我们将要介绍的深度学习,指的是构建神经网络结构,并且运用各种深度学习算法训练网络参数,进而解决各种任务.本文从PyTorch环境配置开始.PyTorch是一种Python接口的深度学习框架,使用灵活,学习方便.还有其他主流的深度学习框架,例如Caffe,TensorFlow,CNTK等等,各有千秋.笔者认为,初期学习还是选择一种

  • python PyTorch预训练示例

    前言 最近使用PyTorch感觉妙不可言,有种当初使用Keras的快感,而且速度还不慢.各种设计直接简洁,方便研究,比tensorflow的臃肿好多了.今天让我们来谈谈PyTorch的预训练,主要是自己写代码的经验以及论坛PyTorch Forums上的一些回答的总结整理. 直接加载预训练模型 如果我们使用的模型和原模型完全一样,那么我们可以直接加载别人训练好的模型: my_resnet = MyResNet(*args, **kwargs) my_resnet.load_state_dict(

  • 关于PyTorch源码解读之torchvision.models

    PyTorch框架中有一个非常重要且好用的包:torchvision,该包主要由3个子包组成,分别是:torchvision.datasets.torchvision.models.torchvision.transforms. 这3个子包的具体介绍可以参考官网: http://pytorch.org/docs/master/torchvision/index.html. 具体代码可以参考github: https://github.com/pytorch/vision/tree/master/

  • [转]prototype 源码解读 超强推荐第1/3页

    复制代码 代码如下: Prototype is a JavaScript framework that aims to ease development of dynamic web applications. Featuring a unique, easy-to-use toolkit for class-driven development and the nicest Ajax library around, Prototype is quickly becoming the codeb

  • Bootstrap源码解读网格系统(3)

    源码解读Bootstrap网格系统 工作原理 数据行(.row)必须包含在容器(.container)中,以便为其赋予合适的对齐方式和内距(padding).如: <div class="container"> <div class="row"></div> </div> .container的实现源码: .container { padding-right: 15px; padding-left: 15px; mar

  • Ajax::prototype 源码解读

    AJAX之旅(1):由prototype_1.3.1进入javascript殿堂-类的初探  还是决定冠上ajax的头衔,毕竟很多人会用这个关键词搜索.虽然我认为这只是个炒作的概念,不过不得不承认ajax叫起来要方便多了.所以ajax的意思我就不详细解释了. 写这个教程的起因很简单:经过一段时间的ajax学习,有一些体会,并且越发认识到ajax技术的强大,所以决定记录下来,顺便也是对自己思路的整理.有关这个教程的后续,请关注http://www.x2design.net 前几年,javascri

  • Bootstrap源码解读按钮(5)

    源码解读Bootstrap按钮 按钮组 按钮组和下拉菜单组件一样,需要依赖于bootstrap.js.使用"btn-group"的容器,把多个按钮放到这个容器中.例如:<div class="btn-group">...</div> "btn-group"容器里除了可以使用<button>元素之外,还可以使用其他标签元素,比如<a>标签.不过这里面的标签元素需要带有类名".btn"

  • Bootstrap源码解读导航(6)

    源码解读Bootstrap导航 基础样式 制作导航条主要通过".nav"样式.默认的".nav"样式不提供默认的导航样式,必须附加另外一个样式才会有效,比如"nav-tabs"."nav-pills"之类.例如: <ul class="nav"> <li><a href="##">1</a></li> <li><

  • Bootstrap源码解读排版(1)

    源码解读Bootstrap排版 粗体 可以使用<b>和<strong>标签让文本直接加粗. 例如: <p>我在学习<strong>Bootstrap</strong></p> 源码 b, strong { font-weight: bold; } 斜体 使用标签<em>或<i>来实现. 例如: <p>我在学<i>Bootstrap</i>.</p> 强调相关的类

  • Bootstrap源码解读下拉菜单(4)

    源码解读Bootstrap下拉菜单 基本用法 在使用Bootstrap框架的下拉菜单时,必须调用Bootstrap框架提供的bootstrap.js文件.因为Bootstrap的组件交互效果都是依赖于jQuery库写的插件,所以在使用bootstrap.min.js之前一定要先加载jquery.min.js才会生效果. 使用方法如下: 1. 使用一个名为"dropdown"的容器包裹了整个下拉菜单元素:<div class="dropdown"><

  • Bootstrap源码解读表单(2)

    源码解读Bootstrap表单 基础表单 对于基础表单,Bootstrap并未对其做太多的定制性效果设计,仅仅对表单内的fieldset.legend.label标签进行了定制.主要将这些元素的margin.padding和border等进行了细化设置. 这些元素如果使用了类名"form-control",将会实现一些设计上的定制效果. 1. 宽度变成了100% 2. 设置了一个浅灰色(#ccc)的边框 3. 具有4px的圆角 4. 设置阴影效果,并且元素得到焦点之时,阴影和边框效果会

  • JavaScript Title、alt提示(Tips)实现源码解读

    而对于图片标签img也有一个alt属性可以起到类似的作用.但很显然这种提示框太单调了,为此有人用JavaScript实现了漂亮的提示框效果,这种效果常用在WEB游戏中,其中下图的网易邮箱与迅雷影视页面就用到这种效果,虽然彼此实现效果有些差异,但整体实现思路是不变的.为了方便大家了解实现的细节,以方便定制自己想要的效果,我上网找了一段不错的源码,并对其进行了详细的注释,希望对大家有帮助. 含注释代码: 复制代码 代码如下: /************************************

随机推荐