使用python的pandas库读取csv文件保存至mysql数据库

第一:pandas.read_csv读取本地csv文件为数据框形式

data=pd.read_csv('G:\data_operation\python_book\chapter5\\sales.csv')

第二:如果存在日期格式数据,利用pandas.to_datatime()改变类型

data.iloc[:,1]=pd.to_datetime(data.iloc[:,1])

注意:=号,这样在原始的数据框中,改变了列的类型

第三:查看列类型

print(data.dtypes)

第四:方法一:保存至MYSQL【缺点耗时长】

利用MYSQLdb库,封装成一个类,实现创建表,添加数据的操作,缺点耗时长

class Jess_mysql():
 """
 设置mysql类,实现创建数据框,表,及添加数据
 """
 def __init__(self):
  self.mysql=MySQLdb.connect(user=mysql_name,host=mysql_host,password=mysql_password,database=mysql_database)
  self.conn=self.mysql.cursor()
 def create_table(self,table_names,col_names):
  """
  创建表
  :param table_names: 表名
  :param col_names: 列名,列表格式
  :return:
  """
  tables=' varchar(20),'.join(['%s'] *len(col_names))
  sql_yuju='create table if not exists `{t}` ({v} varchar(20))'.format(t=table_names,v=tables)#字段需要标注格式
  ss=sql_yuju %(tuple(col_names))
  print(ss)
  self.conn.execute(ss)
  self.mysql.commit()
 def add_data(self,table_name,col_names,col_data):
  """
  :param table_name: 表名
  :param col_names: 列名,字段名
  :param col_data: 字段值
  :return:
  """
  colname=','.join(['%s']*len(col_names))
  data=','.join(['%s']*len(col_data))
  sql_yuju='INSERT INTO `{t}` ({name}) VALUES ({data});'.format(t=table_name,name=colname,data=data)
  ss=sql_yuju%(*col_names,*col_data)
  #print(ss)
  self.conn.execute(ss)
  self.mysql.commit()

第五:利用sqlalchemy的create_engine()方法

1、创建连接

import sqlalchemy
#engine=sqlalchemy.create_engine('mysql + mysqldb://root:123456@118.24.26.227:3306/python_yuny')
engine=sqlalchemy.create_engine('mysql+mysqldb://{user}:{password}@{host}:3306/{database}'.format
        (user=mysql_name,password=mysql_password,host=mysql_host,database=mysql_database))

2、利用pd.io.sql.to_sql()

pd.io.sql.to_sql(frame=data,name='yunying',con=engine,index=False,if_exists='append')

注意相关参数的设置。

此外,保存到mysql中,需要注意日期格式的列,因为在mysql对应的field设置格式为varchar(20)后,原始的日期2015-8-9,写入数据库,只有2015,这需要两步操作。

a、上面第二目录的,利用pandas.to_datetime(,format='%Y-%m-%d')       #format的格式要和原始字符2016-8-9格式一样

b、利用datetime库,实现format='%Y%m%d'

x=data.shape[0]
for i in range(x):
 col_data=list(df.iloc[i,:])
 col_data[1]=datetime.date.strftime(col_data[1],'%Y%d%m')

•这一步后,日期格式由原始的2016-6-2,转为20160606,就可以以写入数据库对应的字段【其字段类型varchar(20)】

第六:读取mysql的数据

df=pd.read_sql('select * from %s'%table_name,con=engine,index_col=None)

默认不设置索引列,可以自行指定索引列名。

总结

以上所述是小编给大家介绍的使用python的pandas库读取csv文件保存至mysql数据库,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!

(0)

相关推荐

  • python如何从文件读取数据及解析

    读取整个文件: 首先创建一个文件,例如我创建了一个t x t文件了. 然后我想读取这个文件了,我首先将上面的这个文件保存在我即将要创建的Python的文件目录下, 即读取文件成功. 解析: 函数open()接受一个参数:即要打开的文件的名称.python在当前执行的文件所在的目录中查找指定文件. 关键字with在不再需要访问文件后将其关闭 要让python打开不与程序文件位于同一目录中的文件,需要提供文件的路径,它让python到系统指定的位置去查找. 以上就是本文的全部内容,希望对大家的学习有

  • 使用python读取.text文件特定行的数据方法

    如何用python循环读取下面.txt文件中,用红括号标出来的数据呢? 首先,观察数据可知,不同行的第一个数据元素不一样,所以考虑直接用正则表达式. 再加上,对读和写文件的操作,就行了 注:我用的是pycharm+python2.7 话不多说,直接上代码 import re f1=file('shen.txt','r') data1=f1.readlines() # print data1 f1.close() results = [] for line in data1: data2=line

  • python读取json文件并将数据插入到mongodb的方法

    本文实例讲述了python读取json文件并将数据插入到mongodb的方法.分享给大家供大家参考.具体实现方法如下: #coding=utf-8 import sunburnt import urllib from pymongo import Connection from bson.objectid import ObjectId import logging from datetime import datetime import json from time import mktime

  • python 读取.csv文件数据到数组(矩阵)的实例讲解

    利用numpy库 (缺点:有缺失值就无法读取) 读: import numpy my_matrix = numpy.loadtxt(open("1.csv","rb"),delimiter=",",skiprows=0) 写: numpy.savetxt('2.csv', my_matrix, delimiter = ',') 可能遇到的问题: SyntaxError: (unicode error) 'unicodeescape' codec

  • python读取txt文件并取其某一列数据的示例

    菜鸟笔记 首先读取的txt文件如下: AAAAF110 0003E818 0003E1FC 0003E770 0003FFFC 90 AAAAF110 0003E824 0003E208 0003E76C 0003FFFC A5 AAAAF110 0003E814 0003E204 0003E760 0003FFFC 85 AAAAF110 0003E7F0 0003E208 0003E764 0003FFFC 68 AAAAF110 0003E7CC 0003E1FC 0003E758 000

  • Python从数据库读取大量数据批量写入文件的方法

    使用机器学习训练数据时,如果数据量较大可能我们不能够一次性将数据加载进内存,这时我们需要将数据进行预处理,分批次加载进内存. 下面是代码作用是将数据从数据库读取出来分批次写入txt文本文件,方便我们做数据的预处理和训练机器学习模型. #%% import pymssql as MySQLdb #这里是python3 如果你是python2.x的话,import MySQLdb #数据库连接属性 hst = '188.10.34.18' usr = 'sa' passwd = 'p@ssw0rd'

  • 对python .txt文件读取及数据处理方法总结

    1.处理包含数据的文件 最近利用Python读取txt文件时遇到了一个小问题,就是在计算两个np.narray()类型的数组时,出现了以下错误: TypeError: ufunc 'subtract' did not contain a loop with signature matching types dtype('<U3') dtype('<U3') dtype('<U3') 作为一个Python新手,遇到这个问题后花费了挺多时间,在网上找了许多大神们写的例子,最后终于解决了. 总

  • 从零学python系列之从文件读取和保存数据

    在HeadFirstPython网站中下载所有文件,解压后以chapter 3中的"sketch.txt"为例: 新建IDLE会话,首先导入os模块,并将工作目录却换到包含文件"sketch.txt"的文件夹,如C:\\Python33\\HeadFirstPython\\chapter3 复制代码 代码如下: >>> import os>>> os.getcwd()    #查看当前工作目录'C:\\Python33'>&

  • 使用python的pandas库读取csv文件保存至mysql数据库

    第一:pandas.read_csv读取本地csv文件为数据框形式 data=pd.read_csv('G:\data_operation\python_book\chapter5\\sales.csv') 第二:如果存在日期格式数据,利用pandas.to_datatime()改变类型 data.iloc[:,1]=pd.to_datetime(data.iloc[:,1]) 注意:=号,这样在原始的数据框中,改变了列的类型 第三:查看列类型 print(data.dtypes) 第四:方法一

  • Python Pandas批量读取csv文件到dataframe的方法

    PYTHON Pandas批量读取csv文件到DATAFRAME 首先使用glob.glob获得文件路径.然后定义一个列表,读取文件后再使用concat合并读取到的数据. #读取数据 import pandas as pd import numpy as np import glob,os path=r'e:\tj\month\fx1806' file=glob.glob(os.path.join(path, "zq*.xls")) print(file) dl= [] for f i

  • 使用pandas生成/读取csv文件的方法实例

    前言 csv是我接触的比较早的一种文件,比较好的是这种文件既能够以电子表格的形式查看又能够以文本的形式查看. 先引入pandas库 import pandas as pd 方法一: 1.我构造了一个cont_list,结构为列表嵌套字典,字典是每一个样本,类似于我们爬虫爬下来的数据的结构 2.利用pd.DataFrame方法先将数据转换成一个二维结构数据,如下方打印的内容所示,cloumns指定列表,列表必须是列表 3.to_csv方法可以直接保存csv文件,index=False表示csv文件

  • 使用pandas read_table读取csv文件的方法

    read_csv是pandas中专门用于csv文件读取的功能,不过这并不是唯一的处理方式.pandas中还有读取表格的通用函数read_table. 接下来使用read_table功能作一下csv文件的读取尝试,使用此功能的时候需要指定文件中的内容分隔符. 查看csv文件的内容如下: In [10]: cat data.csv index,name,comment,,,, 1,name_01,coment_01,,,, 2,name_02,coment_02,,,, 3,name_03,come

  • 使用pandas模块读取csv文件和excel表格,并用matplotlib画图的方法

    如下所示: # coding=utf-8 import pandas as pd # 读取csv文件 3列取名为 name,sex,births,后面参数格式为names= names1880 = pd.read_csv("names_1880.txt", names=['name', 'sex', 'births']) print names1880 print names1880.groupby('sex').births.sum() 输出如下 最后一行是说按sex分组并计算bir

  • php将csv文件导入到mysql数据库的方法

    本文实例讲述了php将csv文件导入到mysql数据库的方法.分享给大家供大家参考.具体分析如下: 本程序实现数据导入原理是先把csv文件上传到服务器,然后再通过php的fopen与fgetcsv文件把数据保存到数组,然后再用while把数据一条条插入到mysql数据库,代码如下: 复制代码 代码如下: <?php $fname = $_files['myfile']['name']; $do = copy($_files['myfile']['tmp_name'],$fname); if ($

  • 一文带你将csv文件导入到mysql数据库(亲测有效)

    目录 需要准备的工具: 第一步:打开安装好的Navicat Premium,连接数据库 第二步:创建数据库,右键127.0.0.1 第三步:导入数据 第四步:重新导入数据 第五步:数据校验 总结 如何将csv文件导入到MySQL数据库中(亲测有效) 需要准备的工具: OrderDaTa.csv文件 Navicat Premium(是一款数据库管理工具,是一个可多重连线资料库的管理工具,它可以让你以单一程式同时连接到MySQL,SQLite.Oracle及PostgreSQL资料库,让管理不同类型

  • 使用pandas库对csv文件进行筛选保存

    这个操作现在看来真没啥难的,但是我找相关的资料真的找了好久. 多数大佬都是直接pandas官网甩我脸上,然后举一个入门级的例子. https://pandas.pydata.org/docs/reference/index.html 首先导入pandas库 import pandas as pd 然后使用read_csv来打开指定的csv文件 df = pd.read_csv('./IP2LOCATION.csv',encoding= 'utf-8') 这个函数里面需要写入csv文件的路径,如果

  • Python安装xarray库读取.nc文件的详细步骤

    目录 第一步: 第二步: 第三步: 附:Python使用xarray读取.nc文件并画出平均值 总结 太坑了,安装之前一定要关掉VPN!!!!!!我的python是3.8版本的. 第一步: 在命令行中输入以下代码安装xarray: conda install xarray 此时直接打开.nc文件可能会报错误,如果错误显示与IO有关,那么必须手动安装scipy和netCDF4,这两个库是用于支持xarray输出的库,如果不添加,就无法输出.nc文件. 第二步: 在命令行中输入以下代码安装scipy

  • ​python中pandas读取csv文件​时如何省去csv.reader()操作指定列步骤

    优点: 方便,有专门支持读取csv文件的pd.read_csv()函数. 将csv转换成二维列表形式 支持通过列名查找特定列. 相比csv库,事半功倍 1.读取csv文件 import pandas as pd   file="c:\data\test.csv" csvPD=pd.read_csv(file)   df = pd.read_csv('data.csv', encoding='gbk') #指定编码     read_csv()方法参数介绍 filepath_or_buf

随机推荐