pandas带有重复索引操作方法

有的时候,可能会遇到表格中出现重复的索引,在操作重复索引的时候可能要注意一些问题。

一、判断索引是否重复

a、Series索引重复判断

s = Series([1,2,3,4,5],index=["a","a","b","b","c"])
print(s.index.is_unique)
#False

Series.index.is_unique为False表示索引重复。

b、DataFrame索引重复判断

a = np.arange(9).reshape(3,3)
data = DataFrame(a,index=["a","b","c"],columns=["one","two","one"])
#判断行索引是否重复
print(data.index.is_unique)
#True
#判断列索引是否重复
print(data.columns.is_unique)
#False 

二、索引取值

如果一个索引对应多个值,Series返回的是一个Series。如果一个索引对应一个值的时候,Series返回的是一个标量,DataFrame返回的是始终是一个DataFrame。

a、Series的索引取值

 s = Series([1, 2, 3, 4, 5], index=["a", "a", "b", "b", "c"])
 print(type(s["a"]))
 #<class 'pandas.core.series.Series'>
 print(s["a"])
 '''
 a 1
 a 2
 '''
 #选取第一个a
 print(s[:1])
 #a 1
 print(s[[0]])
 #a 1

b、DataFrame的索引取值

 a = np.arange(9).reshape(3,3)
 data = DataFrame(a,index=["a","b","b"],columns=["one","two","one"])
 #对行进行选取
 print(type(data.ix["b"]))
 #<class 'pandas.core.frame.DataFrame'>
 print(data.ix["b"])#与data.xs("b")等价
 '''
 one two one
 b 3 4 5
 b 6 7 8
 '''
 #选取第二行
 print(type(data.ix[1:2]))#与data[1:2]等价
 #<class 'pandas.core.frame.DataFrame'>
 print(data.ix[1:2])
 #b 3 4 5
 print(data.ix[[1]])
 #b 3 4 5

 #对列进行选取
 print(data["one"])#等价于data.one 或 data.xs("one",axis=1)
 '''
 one one
 a 0 2
 b 3 5
 b 6 8
 '''
 #选取第一列
 print(data.ix[:,0])
 '''
 a 0
 b 3
 b 6
 '''
 print(data.ix[:,:1])
 '''
 one
 a 0
 b 3
 b 6
 '''

以上这篇pandas带有重复索引操作方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pandas去除重复列的实现方法

    数据准备 假设我们目前有两个数据表: ① 一个数据表是关于三个人他们的id以及其他的几列属性信息 import pandas as pd import numpy as np data = pd.DataFrame(np.random.randint(low=1,high=20,size=(3,4))) data['id'] = range(1,4) # 输出:其中,最左边的0 1 2 为其索引 ② 另外一个数据表是3个用户的app操作日志信息,一个人会有多条app操作记录 sample = p

  • Pandas标记删除重复记录的方法

    Pandas提供了duplicated.Index.duplicated.drop_duplicates函数来标记及删除重复记录 duplicated函数用于标记Series中的值.DataFrame中的记录行是否是重复,重复为True,不重复为False pandas.DataFrame.duplicated(self, subset=None, keep='first') pandas.Series.duplicated(self, keep='first') 其中参数解释如下: subse

  • pandas数据框,统计某列数据对应的个数方法

    现在要解决的问题如下: 我们有一个数据的表 第7列有许多数字,并且是用逗号分隔的,数字又有一个对应的关系: 我们要得到第7列对应关系的统计,就是每一行的第7列a有多少个,b有多少个 好了,我给的解决方法如下: #!/bin/python #-*-coding:UTF-8-*- import pandas as pd import numpy as np dfidspec = pd.read_table("one.txt")#这个是对应关系的文件 dfmgs = pd.read_tabl

  • pandas 根据列的值选取所有行的示例

    如下所示: # 选取等于某些值的行记录 用 == df.loc[df['column_name'] == some_value] # 选取某列是否是某一类型的数值 用 isin df.loc[df['column_name'].isin(some_values)] # 多种条件的选取 用 & df.loc[(df['column'] == some_value) & df['other_column'].isin(some_values)] # 选取不等于某些值的行记录 用 != df.l

  • Pandas统计重复的列里面的值方法

    pandas 代码如下: import pandas as pd import numpy as np salaries = pd.DataFrame({ 'name': ['BOSS', 'Lilei', 'Lilei', 'Han', 'BOSS', 'BOSS', 'Han', 'BOSS'], 'Year': [2016, 2016, 2016, 2016, 2017, 2017, 2017, 2017], 'Salary': [1, 2, 3, 4, 5, 6, 7, 8], 'Bon

  • pandas带有重复索引操作方法

    有的时候,可能会遇到表格中出现重复的索引,在操作重复索引的时候可能要注意一些问题. 一.判断索引是否重复 a.Series索引重复判断 s = Series([1,2,3,4,5],index=["a","a","b","b","c"]) print(s.index.is_unique) #False Series.index.is_unique为False表示索引重复. b.DataFrame索引重复判断

  • pandas去重复行并分类汇总的实现方法

    今天主要记录一下pandas去重复行以及如何分类汇总.以下面的数据帧作为一个例子: import pandas as pd data=pd.DataFrame({'产品':['A','A','A','A'],'数量':[50,50,30,30]}) pandas判断dataframe是否含有重复行数据用:df.duplicated() 第一次出现的数据为False.重复的数据行就被记录为True. 去掉重复行数据使用data.drop_duplicates(). 可以看到索引乱了,我们使用dat

  • pandas数据清洗,排序,索引设置,数据选取方法

    此教程适合有pandas基础的童鞋来看,很多知识点会一笔带过,不做详细解释 Pandas数据格式 Series DataFrame:每个column就是一个Series 基础属性shape,index,columns,values,dtypes,describe(),head(),tail() 统计属性Series: count(),value_counts(),前者是统计总数,后者统计各自value的总数 df.isnull() df的空值为True df.notnull() df的非空值为T

  • pandas去除重复值的实战

    目录 加载数据 sample抽样函数 指定需要更新的值 append直接添加 append函数用法 根据某一列key值进行去重(key唯一) 加载数据 首先,我们需要加载到所需要的数据,这里我们所需要的数据是同过sample函数采样过来的. import pandas as pd #这里说明一下,clean_beer.csv数据有两千多行数据 #所以从其中采样一部分,来进行演示,当然可以简单实用data.head()也可以做练习 data = pd.read_csv('clean_beer.cs

  • 详解mysql中的冗余和重复索引

    mysql允许在相同列上创建多个索引,无论是有意还是无意,mysql需要单独维护重复的索引,并且优化器在优化查询的时候也需要逐个地进行考虑,这会影响性能. 重复索引是指的在相同的列上按照相同的顺序创建的相同类型的索引,应该避免这样创建重复索引,发现以后也应该立即删除.但,在相同的列上创建不同类型的索引来满足不同的查询需求是可以的. CREATE TABLE test( ID INT NOT NULL PRIMARY KEY, A INT NOT NULL, B INT NOT NULL, UNI

  • Pandas GroupBy对象 索引与迭代方法

    如下所示: import pandas as pd df = pd.DataFrame({'性别' : ['男', '女', '男', '女', '男', '女', '男', '男'], '成绩' : ['优秀', '优秀', '及格', '差', '及格', '及格', '优秀', '差'], '年龄' : [15,14,15,12,13,14,15,16]}) GroupBy=df.groupby("性别") GroupBy.iter() GroupBy对象是一个迭代对象,每次迭代

  • 对Pandas MultiIndex(多重索引)详解

    创建多重索引 In [16]: df = pd.DataFrame(np.random.randn(3, 8), index=['A', 'B', 'C'], columns=index) In [17]: df Out[17]: first bar baz foo qux \ second one two one two one two one A 0.895717 0.805244 -1.206412 2.565646 1.431256 1.340309 -1.170299 B 0.4108

  • pandas取出重复数据的方法

    drop_duplicates为我们提供了数据去重的方法,那怎么得到哪些数据有重复呢? 实现步骤: 1.采用drop_duplicates对数据去两次重,一次将重复数据全部去除(keep=False)记为data1,另一次将重复数据保留一个(keep='first)记为data2; 2.求data1和data2的差集即可:data2.append(data1).drop_duplicates(keep=False) 以上这篇pandas取出重复数据的方法就是小编分享给大家的全部内容了,希望能给大

  • mysql重复索引与冗余索引实例分析

    本文实例讲述了mysql重复索引与冗余索引.分享给大家供大家参考,具体如下: 重复索引:表示一个列或者顺序相同的几个列上建立的多个索引. 冗余索引:两个索引所覆盖的列重叠 冗余索引在一些特殊的场景下使用到了索引覆盖,所以比较快. 场景 比如文章与标签表 +--+---+--+ | id | artid | tag | +--+---+--+ | 1 | 1 | PHP | | 2 | 1 | Linux | | 3 | 2 | MySQl | | 4 | 2 | Oracle | +--+---

  • pandas重新生成索引的方法

    在数据处理的过程中,出现了这样的问题,筛选某些数据,出现索引从600多开始,但是我希望这行数据下标从0开始. 这个时候,我想到的是: df.reindex(range(length)) 但是查看一下数据之后,发现0-624之间的值全为Nan,显然不是我需要的数据. 最后找到了说明: pandas调用reindex方法后净会根据新索引进行重排,如果某个索引值当前不存在,就会引入 缺失值:可以通过fill_value参数填充默认值,也可以通过method参数设置填充方法: 感谢身边同事的帮助,找到了

随机推荐