pandas.DataFrame 根据条件新建列并赋值的方法
实例如下所示:
import numpy as np import pandas as pd data = {'city': ['Beijing', 'Shanghai', 'Guangzhou', 'Shenzhen', 'Hangzhou', 'Chongqing'], 'year': [2016,2016,2015,2017,2016, 2016], 'population': [2100, 2300, 1000, 700, 500, 500]} frame = pd.DataFrame(data, columns = ['year', 'city', 'population', 'debt']) # 使用apply函数, 如果city字段包含'ing'关键词,则'判断'这一列赋值为1,否则为0 frame['panduan'] = frame.city.apply(lambda x: 1 if 'ing' in x else 0) print(frame)
以上这篇pandas.DataFrame 根据条件新建列并赋值的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
您可能感兴趣的文章:
- pandas修改DataFrame列名的方法
- python pandas中DataFrame类型数据操作函数的方法
- 对pandas的dataframe绘图并保存的实现方法
- python中pandas.DataFrame对行与列求和及添加新行与列示例
- python中pandas.DataFrame的简单操作方法(创建、索引、增添与删除)
相关推荐
-
python中pandas.DataFrame对行与列求和及添加新行与列示例
本文介绍的是python中pandas.DataFrame对行与列求和及添加新行与列的相关资料,下面话不多说,来看看详细的介绍吧. 方法如下: 导入模块: from pandas import DataFrame import pandas as pd import numpy as np 生成DataFrame数据 df = DataFrame(np.random.randn(4, 5), columns=['A', 'B', 'C', 'D', 'E']) DataFrame数据预览: A
-
python中pandas.DataFrame的简单操作方法(创建、索引、增添与删除)
前言 最近在网上搜了许多关于pandas.DataFrame的操作说明,都是一些基础的操作,但是这些操作组合起来还是比较费时间去正确操作DataFrame,花了我挺长时间去调整BUG的.我在这里做一些总结,方便你我他.感兴趣的朋友们一起来看看吧. 一.创建DataFrame的简单操作: 1.根据字典创造: In [1]: import pandas as pd In [3]: aa={'one':[1,2,3],'two':[2,3,4],'three':[3,4,5]} In [4]: bb=
-
python pandas中DataFrame类型数据操作函数的方法
python数据分析工具pandas中DataFrame和Series作为主要的数据结构. 本文主要是介绍如何对DataFrame数据进行操作并结合一个实例测试操作函数. 1)查看DataFrame数据及属性 df_obj = DataFrame() #创建DataFrame对象 df_obj.dtypes #查看各行的数据格式 df_obj['列名'].astype(int)#转换某列的数据类型 df_obj.head() #查看前几行的数据,默认前5行 df_obj.tail() #查看后几
-
对pandas的dataframe绘图并保存的实现方法
对dataframe绘图并保存: ax = df.plot() fig = ax.get_figure() fig.savefig('fig.png') 可以制定列,对该列各取值作统计: label_dis = df.label.value_counts() ax = label_dis.plot(title='label distribution', kind='bar', figsize=(18, 12)) fig = ax.get_figure() fig.savefig('label_d
-
pandas修改DataFrame列名的方法
在做数据挖掘的时候,想改一个DataFrame的column名称,所以就查了一下,总结如下: 数据如下: >>>import pandas as pd >>>a = pd.DataFrame({'A':[1,2,3], 'B':[4,5,6], 'C':[7,8,9]}) >>> a A B C 0 1 4 7 1 2 5 8 2 3 6 9 方法一:暴力方法 >>>a.columns = ['a','b','c'] >>
-
pandas.DataFrame 根据条件新建列并赋值的方法
实例如下所示: import numpy as np import pandas as pd data = {'city': ['Beijing', 'Shanghai', 'Guangzhou', 'Shenzhen', 'Hangzhou', 'Chongqing'], 'year': [2016,2016,2015,2017,2016, 2016], 'population': [2100, 2300, 1000, 700, 500, 500]} frame = pd.DataFrame(
-
在Pandas DataFrame中插入一列的方法实例
目录 引言 示例1:插入新列作为第一列 示例2:插入新列作为中间列 示例3:插入新列作为最后一列 补充:按条件选择分组分别赋值 总结 引言 通常,您可能希望在 Pandas DataFrame 中插入一个新列.幸运的是,使用 pandas insert()函数很容易做到这一点,该函数使用以下语法: insert(loc, column, value, allow_duplicates=False) 在哪里: loc: 插入列的索引.第一列是 0. column: 赋予新列的名称. value:
-
Pandas中根据条件替换列中的值的四种方式
目录 方法1:使用dataframe.loc[]函数 方法2:使用NumPy.where()函数 方法3:使用pandas掩码函数 方法4:替换包含指定字符的字符串 方法1:使用dataframe.loc[]函数 通过这个方法,我们可以用一个条件或一个布尔数组来访问一组行或列.如果我们可以访问它,我们也可以操作它的值,是的!这是我们的第一个方法,通过pandas中的dataframe.loc[]函数,我们可以访问一个列并通过一个条件改变它的值. 语法:df.loc[ df["column_nam
-
Python 处理 Pandas DataFrame 中的行和列
目录 处理列 处理行 前言: 数据框是一种二维数据结构,即数据以表格的方式在行和列中对齐.我们可以对行/列执行基本操作,例如选择.删除.添加和重命名.在本文中,我们使用的是nba.csv文件. 处理列 为了处理列,我们对列执行基本操作,例如选择.删除.添加和重命名. 列选择:为了在 Pandas DataFrame 中选择一列,我们可以通过列名调用它们来访问这些列. # Import pandas package import pandas as pd # 定义包含员工数据的字典 data =
-
Pandas.DataFrame删除指定行和列(drop)的实现
目录 DataFrame指定的行删除 按行名指定(行标签) 按行号指定 未设置行名的注意事项 DataFrame指定的列删除 按列名指定(列标签) 按列号指定 多行多列的删除 使用drop()方法删除pandas.DataFrame的行和列. 在0.21.0版之前,请使用参数labels和axis指定行和列.从0.21.0开始,可以使用index或columns. 在此,将对以下内容进行说明. DataFrame指定的行删除 按行名指定(行标签) 按行号指定 未设置行名的注意事项 DataFra
-
将pandas.dataframe的数据写入到文件中的方法
导入实验常用的python包.如图2所示. [import pandas as pd]pandas用来做数据处理.[import numpy as np]numpy用来做高维度矩阵运算.[import matplotlib.pyplot as plt]matplotlib用来做数据可视化. pandas数据写入到csv文件中: [names = ['Bob','Jessica','Mary','John','Mel']]创建一个names列表[ births = [968,155,77,578,
-
Python将DataFrame的某一列作为index的方法
下面代码实现了将df中的column列作为index df.set_index(["Column"], inplace=True) 以上这篇Python将DataFrame的某一列作为index的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们. 您可能感兴趣的文章: 对Python中DataFrame按照行遍历的方法 使用DataFrame删除行和列的实例讲解 Python中的index()方法使用教程 Python中List.index()方法的使用
-
Pandas DataFrame 取一行数据会得到Series的方法
Pandas DataFrame 取一行数据会得到Series的方法 如题,想要取如下dataframe的一行数据,以为得到的还是dataframe lista = [1, 3, 7,4,0] listb = [3, 3, 4,4,5] listc = [3, 3, 4,4,6] df1 = pd.DataFrame({'col1':lista,'col2':listb,'colb':listc}) print(df1) print(df1.loc[0,:]) print(type(df1.lo
-
pandas DataFrame 行列索引及值的获取的方法
pandas DataFrame是二维的,所以,它既有列索引,又有行索引 上一篇里只介绍了列索引: import pandas as pd df = pd.DataFrame({'A': [0, 1, 2], 'B': [3, 4, 5]}) print df # 结果: A B 0 0 3 1 1 4 2 2 5 行索引自动生成了 0,1,2 如果要自己指定行索引和列索引,可以使用 index 和 column 参数: 这个数据是5个车站10天内的客流数据: ridership_df = pd
随机推荐
- JS 的应用开发初探(mootools)
- ASP.NET中MD5与SHA1加密的几种方法
- jquery Form轻松实现文件上传
- JavaScript 匿名函数(anonymous function)与闭包(closure)
- Python利用pyHook实现监听用户鼠标与键盘事件
- form身份验证通过后,只能用FormsAuthentication.RedirectFromLoginPage
- PHP抓取网页、解析HTML常用的方法总结
- 某大型网络公司应聘时的笔试题目附答案
- JavaScript 节点操作 以及DOMDocument属性和方法
- mysql 5.7.15 安装配置方法图文教程(windows)
- Node.js连接mongodb实例代码
- 使用Python实现博客上进行自动翻页
- XMLHTTP下载远程数据输出到浏览器
- JavaScript操作XML/HTML比较常用的对象属性集锦
- HttpClient实现调用外部项目接口工具类的示例
- Android DatePicker和DatePickerDialog基本用法示例
- PHP微信开发之查询微信精选文章
- Android 路径查询具体实现
- strncpy与snprintf 的用法比较
- Android编程开发之性能优化技巧总结