C++中的RAII机制详解

前言

在写C++设计模式——单例模式的时候,在写到实例销毁时,设计的GC类是很巧妙的,而这一巧妙的设计就是根据当对象的生命周期结束时会自动调用其析构函数的,而这一巧妙的设计也是有专业的名词的——RAII。那以下将围绕RAII,全面的讲解RAII的相关知识。

什么是RAII?

RAII是Resource Acquisition Is Initialization的简称,是C++语言的一种管理资源、避免泄漏的惯用法。利用的就是C++构造的对象最终会被销毁的原则。RAII的做法是使用一个对象,在其构造时获取对应的资源,在对象生命期内控制对资源的访问,使之始终保持有效,最后在对象析构的时候,释放构造时获取的资源。

为什么要使用RAII?

上面说到RAII是用来管理资源、避免资源泄漏的方法。那么,用了这么久了,也写了这么多程序了,口头上经常会说资源,那么资源是如何定义的?在计算机系统中,资源是数量有限且对系统正常运行具有一定作用的元素。比如:网络套接字、互斥锁、文件句柄和内存等等,它们属于系统资源。由于系统的资源是有限的,就好比自然界的石油,铁矿一样,不是取之不尽,用之不竭的,所以,我们在编程使用系统资源时,都必须遵循一个步骤:

1.申请资源;
2.使用资源;
3.释放资源。

第一步和第二步缺一不可,因为资源必须要申请才能使用的,使用完成以后,必须要释放,如果不释放的话,就会造成资源泄漏。

一个最简单的例子:

代码如下:

#include <iostream>
 
using namespace std;
 
int main()
 
{
    int *testArray = new int [10];
    // Here, you can use the array
    delete [] testArray;
    testArray = NULL ;
    return 0;
}

我们使用new开辟的内存资源,如果我们不进行释放的话,就会造成内存泄漏。所以,在编程的时候,new和delete操作总是匹配操作的。如果总是申请资源而不释放资源,最终会导致资源全部被占用而没有资源可用的场景。但是,在实际的编程中,我们总是会各种不小心的就把释放操作忘了,就是编程的老手,在几千行代码,几万行中代码中,也会犯这种低级的错误。

再来一个例子:

代码如下:

#include <iostream>
using namespace std;
 
bool OperationA();
bool OperationB();
 
int main()
{
    int *testArray = new int [10];
 
    // Here, you can use the array
    if (!OperationA())
    {
        // If the operation A failed, we should delete the memory
        delete [] testArray;
        testArray = NULL ;
        return 0;
    }
 
    if (!OperationB())
    {
        // If the operation A failed, we should delete the memory
        delete [] testArray;
        testArray = NULL ;
        return 0;
    }
 
    // All the operation succeed, delete the memory
    delete [] testArray;
    testArray = NULL ;
    return 0;
}
 
bool OperationA()
 
{
    // Do some operation, if the operate succeed, then return true, else return false
    return false ;
}
 
bool OperationB()
 
{
    // Do some operation, if the operate succeed, then return true, else return false
    return true ;
}

上述这个例子的模型,在实际中是经常使用的,我们不能期待每个操作都是成功返回的,所以,每一个操作,我们需要做出判断,上述例子中,当操作失败时,然后,释放内存,返回程序。上述的代码,极度臃肿,效率下降,更可怕的是,程序的可理解性和可维护性明显降低了,当操作增多时,处理资源释放的代码就会越来越多,越来越乱。如果某一个操作发生了异常而导致释放资源的语句没有被调用,怎么办?这个时候,RAII机制就可以派上用场了。

如何使用RAII?

当我们在一个函数内部使用局部变量,当退出了这个局部变量的作用域时,这个变量也就别销毁了;当这个变量是类对象时,这个时候,就会自动调用这个类的析构函数,而这一切都是自动发生的,不要程序员显示的去调用完成。这个也太好了,RAII就是这样去完成的。由于系统的资源不具有自动释放的功能,而C++中的类具有自动调用析构函数的功能。如果把资源用类进行封装起来,对资源操作都封装在类的内部,在析构函数中进行释放资源。当定义的局部变量的生命结束时,它的析构函数就会自动的被调用,如此,就不用程序员显示的去调用释放资源的操作了。现在,我们就用RAII机制来完成上面的例子。代码如下:

代码如下:

#include <iostream>
using namespace std;
 
class ArrayOperation
{
public :
    ArrayOperation()
    {
        m_Array = new int [10];
    }
 
    void InitArray()
    {
        for (int i = 0; i < 10; ++i)
        {
            *(m_Array + i) = i;
        }
    }
 
    void ShowArray()
    {
        for (int i = 0; i <10; ++i)
        {
            cout<<m_Array[i]<<endl;
        }
    }
 
    ~ArrayOperation()
    {
        cout<< "~ArrayOperation is called" <<endl;
        if (m_Array != NULL )
        {
            delete[] m_Array;  // 非常感谢益可达非常犀利的review,详细可以参加益可达在本文的评论 2014.04.13
            m_Array = NULL ;
        }
    }
 
private :
    int *m_Array;
};
 
bool OperationA();
bool OperationB();
 
int main()
{
    ArrayOperation arrayOp;
    arrayOp.InitArray();
    arrayOp.ShowArray();
    return 0;
}

上面这个例子没有多大的实际意义,只是为了说明RAII的机制问题。下面说一个具有实际意义的例子:

代码如下:

/*
** FileName     : RAII
** Author       : Jelly Young
** Date         : 2013/11/24
** Description  : More information, please go to http://www.jb51.net
*/
 
#include <iostream>
#include <windows.h>
#include <process.h>
 
using namespace std;
 
CRITICAL_SECTION cs;
int gGlobal = 0;
 
class MyLock
{
public:
    MyLock()
    {
        EnterCriticalSection(&cs);
    }
 
    ~MyLock()
    {
        LeaveCriticalSection(&cs);
    }
 
private:
    MyLock( const MyLock &);
    MyLock operator =(const MyLock &);
};
 
void DoComplex(MyLock &lock ) // 非常感谢益可达犀利的review 2014.04.13
{
}
 
unsigned int __stdcall ThreadFun(PVOID pv)
{
    MyLock lock;
    int *para = (int *) pv;
 
    // I need the lock to do some complex thing
    DoComplex(lock);
 
    for (int i = 0; i < 10; ++i)
    {
        ++gGlobal;
        cout<< "Thread " <<*para<<endl;
        cout<<gGlobal<<endl;
    }
    return 0;
}
 
int main()
{
    InitializeCriticalSection(&cs);
 
    int thread1, thread2;
    thread1 = 1;
    thread2 = 2;
 
    HANDLE handle[2];
    handle[0] = ( HANDLE )_beginthreadex(NULL , 0, ThreadFun, ( void *)&thread1, 0, NULL );
    handle[1] = ( HANDLE )_beginthreadex(NULL , 0, ThreadFun, ( void *)&thread2, 0, NULL );
    WaitForMultipleObjects(2, handle, TRUE , INFINITE );
    return 0;
}

这个例子可以说是实际项目的一个模型,当多个进程访问临界变量时,为了不出现错误的情况,需要对临界变量进行加锁;上面的例子就是使用的Windows的临界区域实现的加锁。但是,在使用CRITICAL_SECTION时,EnterCriticalSection和LeaveCriticalSection必须成对使用,很多时候,经常会忘了调用LeaveCriticalSection,此时就会发生死锁的现象。当我将对CRITICAL_SECTION的访问封装到MyLock类中时,之后,我只需要定义一个MyLock变量,而不必手动的去显示调用LeaveCriticalSection函数。

上述的两个例子都是RAII机制的应用,理解了上面的例子,就应该能理解了RAII机制的使用了。

使用RAII的陷阱

在使用RAII时,有些问题是需要特别注意的。容我慢慢道来。

先举个例子:

代码如下:

#include <iostream>
#include <windows.h>
#include <process.h>
 
using namespace std;
 
CRITICAL_SECTION cs;
int gGlobal = 0;
 
class MyLock
{
public:
    MyLock()
    {
        EnterCriticalSection(&cs);
    }
 
    ~MyLock()
    {
        LeaveCriticalSection(&cs);
    }
 
private:
    //MyLock(const MyLock &);
    MyLock operator =(const MyLock &);
};
 
void DoComplex(MyLock lock)
{
}
 
unsigned int __stdcall ThreadFun(PVOID pv) 
{
    MyLock lock;
    int *para = (int *) pv;
 
    // I need the lock to do some complex thing
    DoComplex(lock);
 
    for (int i = 0; i < 10; ++i)
    {
        ++gGlobal;
        cout<< "Thread " <<*para<<endl;
        cout<<gGlobal<<endl;
    }
    return 0;
}
 
int main()
{
    InitializeCriticalSection(&cs);
 
    int thread1, thread2;
    thread1 = 1;
    thread2 = 2;
 
    HANDLE handle[2];
    handle[0] = ( HANDLE )_beginthreadex(NULL , 0, ThreadFun, ( void*)&thread1, 0, NULL );
    handle[1] = ( HANDLE )_beginthreadex(NULL , 0, ThreadFun, ( void*)&thread2, 0, NULL );
    WaitForMultipleObjects(2, handle, TRUE , INFINITE );
    return 0;
}

这个例子是在上个例子上的基础上进行修改的。添加了一个DoComplex函数,在线程中调用该函数,该函数很普通,但是,该函数的参数就是我们封装的类。你运行该代码,就会发现,加入了该函数,对gGlobal全局变量的访问整个就乱了。你有么有想过,这是为什么呢?网上很多讲RAII的文章,都只是说了这个问题,但是没有说为什么,在这里,我好好的分析一下这里。

由于DoComplex函数的参数使用的传值,此时就会发生值的复制,会调用类的复制构造函数,生成一个临时的对象,由于MyLock没有实现复制构造函数,所以就是使用的默认复制构造函数,然后在DoComplex中使用这个临时变量。当调用完成以后,这个临时变量的析构函数就会被调用,由于在析构函数中调用了LeaveCriticalSection,导致了提前离开了CRITICAL_SECTION,从而造成对gGlobal变量访问冲突问题,如果在MyLock类中添加以下代码,程序就又能正确运行:

代码如下:

MyLock( const MyLock & temp )
{
    EnterCriticalSection(&cs);
}

这是因为CRITICAL_SECTION 允许多次EnterCriticalSection,但是,LeaveCriticalSection必须和EnterCriticalSection匹配才能不出现死锁的现象。

为了避免掉进了这个陷阱,同时考虑到封装的是资源,由于资源很多时候是不具备拷贝语义的,所以,在实际实现过程中,MyLock类应该如下:

代码如下:

class MyLock
{
public:
    MyLock()
    {
        EnterCriticalSection(&cs);
    }
 
    ~MyLock()
    {
        LeaveCriticalSection(&cs);
    }
 
private:
    MyLock(const MyLock &);
    MyLock operator =(const MyLock &);
};

这样就防止了背后的资源复制过程,让资源的一切操作都在自己的控制当中。如果要知道复制构造函数和赋值操作符的调用,可以好好的阅读一下《深度探索C++对象模型这本书》。

总结

说了这么多了,RAII的本质内容是用对象代表资源,把管理资源的任务转化为管理对象的任务,将资源的获取和释放与对象的构造和析构对应起来,从而确保在对象的生存期内资源始终有效,对象销毁时资源一定会被释放。说白了,就是拥有了对象,就拥有了资源,对象在,资源则在。所以,RAII机制是进行资源管理的有力武器,C++程序员依靠RAII写出的代码不仅简洁优雅,而且做到了异常安全。在以后的编程实际中,可以使用RAII机制,让自己的代码更漂亮。

(0)

相关推荐

  • C++中的RAII机制详解

    前言 在写C++设计模式--单例模式的时候,在写到实例销毁时,设计的GC类是很巧妙的,而这一巧妙的设计就是根据当对象的生命周期结束时会自动调用其析构函数的,而这一巧妙的设计也是有专业的名词的--RAII.那以下将围绕RAII,全面的讲解RAII的相关知识. 什么是RAII? RAII是Resource Acquisition Is Initialization的简称,是C++语言的一种管理资源.避免泄漏的惯用法.利用的就是C++构造的对象最终会被销毁的原则.RAII的做法是使用一个对象,在其构造

  • Java中的反射机制详解

    Java中的反射机制详解 反射,当时经常听他们说,自己也看过一些资料,也可能在设计模式中使用过,但是感觉对它没有一个较深入的了解,这次重新学习了一下,感觉还行吧! 一,先看一下反射的概念: 主要是指程序可以访问,检测和修改它本身状态或行为的一种能力,并能根据自身行为的状态和结果,调整或修改应用所描述行为的状态和相关的语义. 反射是Java中一种强大的工具,能够使我们很方便的创建灵活的代码,这些代码可以再运行时装配,无需在组件之间进行源代码链接.但是反射使用不当会成本很高! 看概念很晕的,继续往下

  • Android中的binder机制详解

    前言 Binder做为Android中核心机制,对于理解Android系统是必不可少的,关于binder的文章也有很多,但是每次看总感觉看的不是很懂,到底什么才是binder机制?为什么要使用binder机制?binder机制又是怎样运行的呢?这些问题只是了解binder机制是不够的,需要从Android的整体系统出发来分析,在我找了很多资料后,真正的弄懂了binder机制,相信看完这篇文章大家也可以弄懂binder机制. 1.Binder是什么? 要理解binder,先要知道IPC,Inter

  • C++中函数匹配机制详解

    首先,编译器会确定候选函数然后确定可行函数可行函数,再从可行函数中进一步挑选 候选函数:重载函数集中的函数 可行函数:可以调用的函数 最后进行寻找最佳匹配 有以下几种规则 1.该函数的每个实参的匹配都不劣于其他可行函数 2.至少有一个实参的匹配优于其他可行函数的匹配 3.满足上面两种要求的函数有且只有一个 如果上面三个要求都没满足,则出现二义性 一些演示 各有一个精确匹配的实参,编译器报错,不满足条件3 error void func(int a,int b) { cout << "

  • C++中的异常处理机制详解

    异常处理 增强错误恢复能力是提高代码健壮性的最有力的途径之一,C语言中采用的错误处理方法被认为是紧耦合的,函数的使用者必须在非常靠近函数调用的地方编写错误处理代码,这样会使得其变得笨拙和难以使用.C++中引入了异常处理机制,这是C++的主要特征之一,是考虑问题和处理错误的一种更好的方式.使用错误处理可以带来一些优点,如下: 错误处理代码的编写不再冗长乏味,并且不再和正常的代码混合在一起,程序员只需要编写希望产生的代码,然后在后面某个单独的区段里编写处理错误的嗲吗.多次调用同一个函数,则只需要某个

  • Android中NestedScrolling滑动机制详解

    1,如今NestedScrolling运用到很多地方了,要想好看一点的滑动变换,基本上就是使用这个来完成的,让我们来简单的了解一下. 2,NestedScrolling机制能够让父View和子View在滚动式进行配合,其基本流程如下: 当子view开始滚动之前,可以通知父View,让其先于自己进行滚动: 子View自己进行滚动: 子view滚动之后,还可以通知父view继续滚动. 而要实现这样的交互机制,首先父view要实现NestedScrollingParent接口,而子View需要实现N恩

  • C++中的RTTI机制详解

    前言 RTTI是"Runtime Type Information"的缩写,意思是运行时类型信息,它提供了运行时确定对象类型的方法.RTTI并不是什么新的东西,很早就有了这个技术,但是,在实际应用中使用的比较少而已.而我这里就是对RTTI进行总结,今天我没有用到,并不代表这个东西没用.学无止境,先从typeid函数开始讲起. typeid函数 typeid的主要作用就是让用户知道当前的变量是什么类型的,比如以下代码: 复制代码 代码如下: #include <iostream&g

  • node中koa中间件机制详解

    koa koa是由express原班人马打造的一个更小.更富有表现力.更健壮的web框架. 在我眼中,koa的确是比express轻量的多,koa给我的感觉更像是一个中间件框架,koa只是一个基础的架子,需要用到的相应的功能时,用相应的中间件来实现就好,诸如路由系统等.一个更好的点在于,express是基于回调来处理,至于回调到底有多么的不好,大家可以自行搜索来看.koa1基于的co库,所以koa1利用Generator来代替回调,而koa2由于node对async/await的支持,所以koa

  • node.js中的事件处理机制详解

    EventEmitter类 在Node.js的用于实现各种事件处理的event模块中,定义了一个EventEmitter类.所有可能触发事件的对象都是一个集成了EventEmitter类的子类的实例对象,在Node.js中,为EventEmitter类定义了许多方法,所有与对象的事件处理函数的绑定及解除相关的处理均依靠这些方法的调用来执行. EventEmitter类的各种方法 event:代表事件名 listener:代表事件处理函数 中括号内的参数代表该参数为可选参数 方法名与参数 描述 a

  • C语言中的参数传递机制详解

    C中的参数传递 本文尝试讨论下C中实参与形参的关系,即参数传递的问题. C语言的参数传递 值传递 首先看下列代码: #include <stdio.h> int main(){ int n = 1; printf("实参n的值:%d,地址:%#x\n", n, &n); void change(int i);//函数声明 change(n); printf("函数调用后实参n的值:%d,地址:%#x\n", n, &n); return

随机推荐