C++堆排序算法的实现方法

本文实例讲述了C++实现堆排序算法的方法,相信对于大家学习数据结构与算法会起到一定的帮助作用。具体内容如下:

首先,由于堆排序算法说起来比较长,所以在这里单独讲一下。堆排序是一种树形选择排序方法,它的特点是:在排序过程中,将L[n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树中双亲节点和孩子节点之间的内在关系,在当前无序区中选择关键字最大(或最小)的元素。

一、堆的定义

堆的定义如下:n个关键字序列L[n]成为堆,当且仅当该序列满足:
①L(i) <= L(2i)且L(i) <= L(2i+1)  或者  ②L(i) >= L(2i)且L(i) >= L(2i+1)   其中i属于[1, n/2]。

满足第①种情况的堆称为小根堆(小顶堆),满足第②种情况的堆称为大根堆(大顶堆)。在大根堆中,最大元素存放在根结点中,且对任一非根结点,它的值小于或等于其双亲结点值。小根堆则恰恰相反,小根堆的根结点存放的是最小元素。例如{16, 14, 10, 8, 7, 9, 3, 2}表示的大根堆:

二、构造初始堆

堆排序的关键就是构造初始堆。n个结点的完全二叉树中,最后一个结点是第n/2(向下取整)个结点的孩子。所以构造初始堆的流程是:对第n/2(向下取整)个结点为根的子树进行筛选(以大根堆为例,若根结点的关键字小于左右子女中关键字的较大者,则交换),使该子树成为堆。之后向前依次对从n/2-1到1的各结点为根的子树进行筛选,看该结点值是否大于其左右子结点的值,若不是,将左右子结点中较大值与之交换,交换后可能会破坏下一级的堆,于是继续采用上述方法构造下一级的堆,直到以该结点为根的子树构成堆为止。反复利用上述调整堆的方法建堆,直到根结点。

由于在数组中下标从0开始,所以在堆中i的左子结点为2*i+1,右子结点为2*i+2。下面是将某个结点i向下调整建堆的算法实现:

void AdjustDown(ElementType A[], int i, int len)
{
  ElementType temp = A[i]; // 暂存A[i] 

  for(int largest=2*i+1; largest<len; largest=2*largest+1)
  {
    if(largest!=len-1 && A[largest+1]>A[largest])
      ++largest;     // 如果右子结点大
    if(temp < A[largest])
    {
      A[i] = A[largest];
      i = largest;     // 记录交换后的位置
    }
    else
      break;
  }
  A[i] = temp;  // 被筛选结点的值放入最终位置
} 

建堆,从n/2(向下取整)到1依次对各结点向下调整,当然由于数组下标从0开始,所以:

void BuildMaxHeap(ElementType A[], int len)
{
  for(int i=len/2-1; i>=0; --i) // 从i=n/2-1到0,反复调整堆
    AdjustDown(A, i, len);
}

三、堆排序

构造初始堆成功以后,堆排序的思路就很简单了:首先将存放在L[n]中的n个元素建成初始堆,由于堆本身的特点(以大根堆为例),堆顶元素就是最大值。输出堆顶元素后,通常将堆底元素送入堆顶,此时根结点已不满足大根堆的性质,堆被破坏。这时将堆顶元素向下调整使其继续保持大根堆的性质,再输出堆顶元素。如此重复,直到堆中仅剩下一个元素为止。算法实现如下:

void HeapSort(ElementType A[], int n)
{
  BuildMaxHeap(A, n);    // 初始建堆
  for(int i=n-1; i>0; --i) // n-1趟的交换和建堆过程
  {
    // 输出最大的堆顶元素(和堆底元素交换)
    A[0] = A[0]^A[i];
    A[i] = A[0]^A[i];
    A[0] = A[0]^A[i];
    // 调整,把剩余的n-1个元素整理成堆
    AdjustDown(A, 0, i);
  }
}

四、性能分析

时间复杂度:向下调整的时间与树高有关,为O(h)。可以证明在元素个数为n的序列上建堆,其时间复杂度为O(n)。之后还有n-1次向下调整操作,每次调整的时间为O(h),故在最好,最坏和平均情况下,堆排序的时间复杂度为O(nlogn)。

空间复杂度:仅使用了常数个辅助单元,空间复杂度为O(1)。

稳定性:不稳定。

(0)

相关推荐

  • 采用C++实现区间图着色问题(贪心算法)实例详解

    本文所述算法即假设要用很多个教室对一组活动进行调度.我们希望使用尽可能少的教室来调度所有活动.采用C++的贪心算法,来确定哪一个活动使用哪一间教室. 对于这个问题也常被称为区间图着色问题,即相容的活动着同色,不相容的着不同颜色,使得所用颜色数最少. 具体实现代码如下: //贪心算法 #include "stdafx.h" #include<iostream> #define N 100 using namespace std; struct Activity { int n

  • c++实现MD5算法实现代码

    测试结果和百度百科测试例子一致. 实现过程中需要注意事项:最后把四个变量A B C D 链接成结果时 ,注意变量高低位的先后顺序,具体参考 LinkResult()方法. md5.h #ifndef _MD5_H_ #define _MD5_H_ #include <iostream> #include <string> using namespace std; class MD5 { public: typedef unsigned char uchar8; //make sur

  • 基于C++的农夫过河问题算法设计与实现方法

    本文实例讲述了基于C++的农夫过河问题算法设计与实现方法.分享给大家供大家参考,具体如下: 问题描述: 一个农夫带着-只狼.一只羊和-棵白菜,身处河的南岸.他要把这些东西全部运到北岸.他面前只有一条小船,船只能容下他和-件物品,另外只有农夫才能撑船.如果农夫在场,则狼不能吃羊,羊不能吃白菜,否则狼会吃羊,羊会吃白菜,所以农夫不能留下羊和白菜自己离开,也不能留下狼和羊自己离开,而狼不吃白菜.请求出农夫将所有的东西运过河的方案. 实现上述求解的搜索过程可以采用两种不同的策略:一种广度优先搜索,另一种

  • C++实现简单遗传算法

    本文实例讲述了C++实现简单遗传算法.分享给大家供大家参考.具体实现方法如下: //遗传算法 GA #include<iostream> #include <cstdlib> #include<bitset> using namespace std; const int L=5; //定义编码的长度 int f(int x) //定义测设函数f(x) { int result; result=x*x*x-60*x*x+900*x+100; return result;

  • C++实现迷宫算法实例解析

    本文以实例形式描述了C++实现迷宫算法.本例中的迷宫是一个矩形区域,它有一个入口和一个出口.在迷宫的内部包含不能穿越的墙或障碍.障碍物沿着行和列放置,它们与迷宫的矩形边界平行.迷宫的入口在左上角,出口在右下角 本实例迷宫算法的功能主要有: 1.自动生成10*10迷宫图 2.判断是否有迷宫出口,并且画出路线图 具体实现代码如下: # include <iostream> # include <list> # include <sys/timeb.h> # include

  • 基于一致性hash算法 C++语言的实现详解

    一致性hash算法实现有两个关键问题需要解决,一个是用于结点存储和查找的数据结构的选择,另一个是结点hash算法的选择. 首先来谈一下一致性hash算法中用于存储结点的数据结构.通过了解一致性hash的原理,我们知道结点可以想象为是存储在一个环形的数据结构上(如下图),结点A.B.C.D按hash值在环形分布上是有序的,也就是说结点可以按hash值存储在一个有序的队列里.如下图所示,当一个hash值为-2^20的请求点P查找路由结点时,一致性hash算法会按hash值的顺时针方向路由到第一个结点

  • C++三色球问题描述与算法分析

    本文实例讲述了C++三色球问题.分享给大家供大家参考,具体如下: /* * 作 者:刘同宾 * 完成日期:2012 年 11 月 15 日 * 版 本 号:v1.0 * * 输入描述: * 问题描述:三色球问题:若一个口袋中放有12个球,其中有3个红的.3个白的和6个黒的,问从中任取8个共有多少种不同的颜色搭配? * 提示: 设任取的红球个数为i,白球个数为j,则黒球个数为8-i-j,根据题意红球和白球个数的取值范围是0~3, * 在红球和白球个数确定的条件下,黒球个数取值应为8-i-j<=6.

  • 海量数据处理系列之:用C++实现Bitmap算法

    bitmap是一个十分有用的结构.所谓的Bit-map就是用一个bit位来标记某个元素对应的Value, 而Key即是该元素.由于采用了Bit为单位来存储数据,因此在存储空间方面,可以大大节省. 适用范围:可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下基本原理及要点:使用bit数组来表示某些元素是否存在,比如8位电话号码扩展:bloom filter可以看做是对bit-map的扩展问题实例:1)已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数.8位最

  • C++实现矩阵原地转置算法

    本文实例描述了C++实现矩阵原地转置算法,是一个非常经典的算法,相信对于学习C++算法的朋友有很大的帮助.具体如下: 一.问题描述 微软面试题:将一个MxN的矩阵存储在一个一维数组中,编程实现矩阵的转置. 要求:空间复杂度为O(1) 二.思路分析 下面以一个4x2的矩阵A={1,2,3,4,5,6,7,8}进行分析,转置过程如下图: 图中右下角的红色数字表示在一维数组中的下标.矩阵的转置其实就是数组中元素的移动,具体的移动过程如下图: 我们发现,这些移动的元素的下标是一个个环,下标1的元素移动到

  • C++归并排序算法实例

    归并排序 归并排序算法是采用分治法的一个非常典型的应用.归并排序的思想是将一个数组中的数都分成单个的:对于单独的一个数,它肯定是有序的,然后,我们将这些有序的单个数在合并起来,组成一个有序的数列.这就是归并排序的思想.它的时间复杂度为O(N*logN). 代码实现 复制代码 代码如下: #include <iostream> using namespace std;   //将有二个有序数列a[first...mid]和a[mid...last]合并. void mergearray(int

  • C++实现DES加密算法实例解析

    本文所述实例是一个实现DES加密算法的程序代码,在C++中,DES加密是比较常用的加密算法了,且应用非常广泛.本CPP类文件可满足你的DES加密需要,代码中附带了丰富的注释,相信对于大家理解DES可以起到很大的帮助. 具体实现代码如下: #include "memory.h" #include "stdio.h" enum {encrypt,decrypt};//ENCRYPT:加密,DECRYPT:解密 void des_run(char out[8],char

随机推荐