对python pandas读取剪贴板内容的方法详解
我使用的Python3.5,32版本win764位系统,pandas0.19版本,使用df=pd.read_clipboard()的时候读不到数据,百度查找解决方法,找到了一个比较靠谱的
打开site-packages\pandas\io\clipboard.py
在 text = clipboard_get() 后面一行
加入这句: text = text.decode('UTF-8')
保存,然后就可以使用了
df=pd.read_clipboard() #变成正常的了
下次可以在其他地方复制内容,使用这个函数了;
以上这篇对python pandas读取剪贴板内容的方法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
Python遍历pandas数据方法总结
前言 Pandas是python的一个数据分析包,提供了大量的快速便捷处理数据的函数和方法.其中Pandas定义了Series 和 DataFrame两种数据类型,这使数据操作变得更简单.Series 是一种一维的数据结构,类似于将列表数据值与索引值相结合.DataFrame 是一种二维的数据结构,接近于电子表格或者mysql数据库的形式. 在数据分析中不可避免的涉及到对数据的遍历查询和处理,比如我们需要将dataframe两列数据两两相除,并将结果存储于一个新的列表中.本文通过该例程介绍对pa
-
Python pandas常用函数详解
本文研究的主要是pandas常用函数,具体介绍如下. 1 import语句 import pandas as pd import numpy as np import matplotlib.pyplot as plt import datetime import re 2 文件读取 df = pd.read_csv(path='file.csv') 参数:header=None 用默认列名,0,1,2,3... names=['A', 'B', 'C'...] 自定义列名 index_col='
-
python用pandas数据加载、存储与文件格式的实例
数据加载.存储与文件格式 pandas提供了一些用于将表格型数据读取为DataFrame对象的函数.其中read_csv和read_talbe用得最多 pandas中的解析函数: 函数 说明 read_csv 从文件.URL.文件型对象中加载带分隔符的数据,默认分隔符为逗号 read_table 从文件.URL.文件型对象中加载带分隔符的数据.默认分隔符为制表符("\t") read_fwf 读取定宽列格式数据(也就是说,没有分隔符) read_clipboard 读取剪贴板中的数据,
-
通过Pandas读取大文件的实例
当数据文件过大时,由于计算机内存有限,需要对大文件进行分块读取: import pandas as pd f = open('E:/学习相关/Python/数据样例/用户侧数据/test数据.csv') reader = pd.read_csv(f, sep=',', iterator=True) loop = True chunkSize = 100000 chunks = [] while loop: try: chunk = reader.get_chunk(chunkSize) chun
-
利用pandas读取中文数据集的方法
直接利用numpy读取非数字型的数据集时需要先进行转换,而且python3在处理中文数据方面确实比较蛋疼.最近在学习周志华老师的那本西瓜书,需要没事和一堆西瓜反复较劲,之前进行联系的时候都是利用批量替换先清理一遍数据,不过这样实在是太麻烦了,今天偶然发现可以使用pandas来实现读取中文数据集的功能. 首先分享一下数据集: 编号,色泽,根蒂,敲声,纹理,脐部,触感,密度,含糖率,好瓜 1,青绿,蜷缩,浊响,清晰,凹陷,硬滑,0.697,0.46,是 2,乌黑,蜷缩,沉闷,清晰,凹陷,硬滑,0.7
-
对pandas写入读取h5文件的方法详解
1.引言 通过参考相关博客对hdf5格式简要介绍. hdf5在存储的是支持压缩,使用的方式是blosc,这个是速度最快的也是pandas默认支持的. 使用压缩可以提磁盘利用率,节省空间. 开启压缩也没有什么劣势,只会慢一点点. 压缩在小数据量的时候优势不明显,数据量大了才有优势. 同时发现hdf读取文件的时候只能是一次写,写的时候可以append,可以put,但是写完成了之后关闭文件,就不能再写了, 会覆盖. 另外,为什么单独说pandas,主要因为本人目前对于h5py这个包的理解不是很深入,不
-
对python pandas读取剪贴板内容的方法详解
我使用的Python3.5,32版本win764位系统,pandas0.19版本,使用df=pd.read_clipboard()的时候读不到数据,百度查找解决方法,找到了一个比较靠谱的 打开site-packages\pandas\io\clipboard.py 在 text = clipboard_get() 后面一行 加入这句: text = text.decode('UTF-8') 保存,然后就可以使用了 df=pd.read_clipboard() #变成正常的了 下次可以在其他地方复
-
对python pandas 画移动平均线的方法详解
数据文件 66001_.txt 内容格式: date,jz0,jz1,jz2,jz3,jz4,jz5 2012-12-28,0.9326,0.8835,1.0289,1.0027,1.1067,1.0023 2012-12-31,0.9435,0.8945,1.0435,1.0031,1.1229,1.0027 2013-01-04,0.9403,0.8898,1.0385,1.0032,1.1183,1.0030 ... ... pd_roll_mean1.py # -*- coding: u
-
python pandas修改列属性的方法详解
使用astype如下: df[[column]] = df[[column]].astype(type) type即int.float等类型. 示例: import pandas as pd data = pd.DataFrame([[1, "2"], [2, "2"]]) data.columns = ["one", "two"] print(data) # 当前类型 print("----\n修改前类型:&quo
-
Java使用I/O流读取文件内容的方法详解
本文实例讲述了Java使用I/O流读取文件内容的方法.分享给大家供大家参考,具体如下: 要利用I/O流读取文件内容,首先要掌握InputStream的体系结构. 这个体系中FileInputStream和BufferedInputStream是一定要掌握的,因为使用的频率比较高. InputStream的方法:InputStream位于java.io包下 OutputStream的方法: 读取文件(代码): package com.jredu.oopch11; import java.io.Fi
-
Python逐行读取文件内容的方法总结
Python四种逐行读取文件内容的方法 下面四种Python逐行读取文件内容的方法, 分析了各种方法的优缺点及应用场景,以下代码在python3中测试通过, python2中运行部分代码已注释,稍加修改即可. 方法一:readline函数 # -*- coding: UTF-8 -*- f = open("/pythontab/code.txt") # 返回一个文件对象 line = f.readline() # 调用文件的 readline()方法 while line: # pri
-
Python自动操作Excel文件的方法详解
目录 工具 读取Excel文件内容 写入Excel文件内容 Excel文件样式调整 设置表头的位置 设置单元格的宽高 总结 工具 python3.7 Pycharm Excel xlwt&xlrd 读取Excel文件内容 当前文件夹下有一个名为“股票数据.xlsx”的Excel文件,可以按照下列代码方式来操作它. import xlrd # 使用xlrd模块的open_workbook函数打开指定Excel文件并获得Book对象(工作簿) wb = xlrd.open_workbook('股票数
-
Python高效处理大文件的方法详解
目录 开始 处理文本 串行处理 多进程处理 并行处理 并行批量处理 将文件分割成批 运行并行批处理 tqdm 并发 结论 为了进行并行处理,我们将任务划分为子单元.它增加了程序处理的作业数量,减少了整体处理时间. 例如,如果你正在处理一个大的CSV文件,你想修改一个单列.我们将把数据以数组的形式输入函数,它将根据可用的进程数量,一次并行处理多个值.这些进程是基于你的处理器内核的数量. 在这篇文章中,我们将学习如何使用multiprocessing.joblib和tqdm Python包减少大文件
-
Python制作数据分析透视表的方法详解
目录 1.pivot_table函数index属性 2.pivot_table函数values属性 3.pivot_table函数aggfunc属性 4.pivot_table函数columns属性 透视表是一种可以对数据动态排布并且分类汇总的表格格式,在常用的python的数据分析非标准库pandas中体现为pivot_table模块. pivot_table数据透视表可以灵活的定制数据分析需求进行汇总,当然在Excel办公操作中早就存在了数据透视表的工具.如今,数据透视表被应用在python
-
对python dataframe逻辑取值的方法详解
我遇到的一个小需求,就是希望通过判断pandas dataframe中一列的值在两个条件范围(比如下面代码中所描述的逻辑,取小于u-3ε和大于u+3ε的值),然后取出dataframe中的所有符合条件的值,这个需求的解决与普通的iloc.loc.ix的方式不同,所以我想分享一下,希望可以帮到遇到这个困难的朋友们,下面是我的实例代码: doc[~((doc.iloc[:,141:142]<(mean_value-3*std_value))&(doc.iloc[:,141:142]>(me
随机推荐
- HTML5+jQuery插件Quicksand实现超酷的星际争霸2兵种分类展示效果(附demo源码下载)
- litjson读取数据示例
- vuejs使用递归组件实现树形目录的方法
- Webpack常见静态资源处理-模块加载器(Loaders)+ExtractTextPlugin插件
- Spring整合Redis完整实例代码
- ASP.NET的事件模型(很适合学习的文章)
- php通过数组实现多条件查询实现方法(字符串分割)
- ASP利用XMLHTTP实现表单提交以及cookies的发送的代码
- C#巧用DateTime预设可选的日期范围(如本年度、本季度、本月等)
- 微信JSAPI支付操作需要注意的细节
- IO多路复用之select全面总结(必看篇)
- Javascript中的var_dump函数实现代码
- Serv-U ftp服务器 Server 设置详细说明
- C++实现下载的代码
- 用Go写一个轻量级的ssh批量操作工具的方法
- java实现24点游戏
- Android系统图片分享工具类
- Java JDK1.7对字符串的BASE64编码解码方法
- Vue.js watch监视属性知识点总结
- linux中chmod命令用法详解