机器学习10大经典算法详解

本文为大家分享了机器学习10大经典算法,供大家参考,具体内容如下

1、C4.5

C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法.  C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:

1)用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;

2)在树构造过程中进行剪枝;

3)能够完成对连续属性的离散化处理;

4)能够对不完整数据进行处理。

C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。

2、The k-means algorithm即K-Means算法

k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。

3、Support vector machines支持向量机

支持向量机(Support Vector Machine),简称SV机(论文中一般简称SVM)。它是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt和Barnard将支持向量机和其他分类器进行了比较。

4、The Apriori algorithm

Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。

5、最大期望(EM)算法

在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。

6、PageRank网页排名

PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。

PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票,被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。

7、AdaBoost

Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。

8、kNN: k-nearest neighbor classification

K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

9、Naive Bayes朴素贝叶斯

在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。

10、CART:分类与回归树

CART, Classification and Regression Trees。在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法;第二个想法是用验证数据进行剪枝。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python语言实现机器学习的K-近邻算法

    写在前面 额...最近开始学习机器学习嘛,网上找到一本关于机器学习的书籍,名字叫做<机器学习实战>.很巧的是,这本书里的算法是用Python语言实现的,刚好之前我学过一些Python基础知识,所以这本书对于我来说,无疑是雪中送炭啊.接下来,我还是给大家讲讲实际的东西吧. 什么是K-近邻算法? 简单的说,K-近邻算法就是采用测量不同特征值之间的距离方法来进行分类.它的工作原理是:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系

  • 给你选择Python语言实现机器学习算法的三大理由

    基于以下三个原因,我们选择Python作为实现机器学习算法的编程语言:(1) Python的语法清晰:(2) 易于操作纯文本文件:(3) 使用广泛,存在大量的开发文档. 可执行伪代码 Python具有清晰的语法结构,大家也把它称作可执行伪代码(executable pseudo-code).默认安装的Python开发环境已经附带了很多高级数据类型,如列表.元组.字典.集合.队列等,无需进一步编程就可以使用这些数据类型的操作.使用这些数据类型使得实现抽象的数学概念非常简单.此外,读者还可以使用自己

  • PHP实现机器学习之朴素贝叶斯算法详解

    本文实例讲述了PHP实现机器学习之朴素贝叶斯算法.分享给大家供大家参考,具体如下: 机器学习已经在我们的生活中变得随处可见了.比如从你在家的时候温控器开始工作到智能汽车以及我们口袋中的智能手机.机器学习看上去已经无处不在并且是一个非常值得探索的领域.但是什么是机器学习呢?通常来说,机器学习就是让系统不断的学习并且对新的问题进行预测.从简单的预测购物商品到复杂的数字助理预测. 在这篇文章我将会使用朴素贝叶斯算法Clasifier作为一个类来介绍.这是一个简单易于实施的算法,并且可给出满意的结果.但

  • Python机器学习之决策树算法实例详解

    本文实例讲述了Python机器学习之决策树算法.分享给大家供大家参考,具体如下: 决策树学习是应用最广泛的归纳推理算法之一,是一种逼近离散值目标函数的方法,在这种方法中学习到的函数被表示为一棵决策树.决策树可以使用不熟悉的数据集合,并从中提取出一系列规则,机器学习算法最终将使用这些从数据集中创造的规则.决策树的优点为:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据.缺点为:可能产生过度匹配的问题.决策树适于处理离散型和连续型的数据. 在决策树中最重要的就是如何选取

  • 机器学习10大经典算法详解

    本文为大家分享了机器学习10大经典算法,供大家参考,具体内容如下 1.C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法.  C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1)用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足: 2)在树构造过程中进行剪枝: 3)能够完成对连续属性的离散化处理: 4)能够对不完整数据进行处理. C4.5算法有如下优点:产生的分类规则易于理解,准确率较高.其缺点是:在构造树的过

  • python机器学习基础K近邻算法详解KNN

    目录 一.k-近邻算法原理及API 1.k-近邻算法原理 2.k-近邻算法API 3.k-近邻算法特点 二.k-近邻算法案例分析案例信息概述 第一部分:处理数据 1.数据量缩小 2.处理时间 3.进一步处理时间 4.提取并构造时间特征 5.删除无用特征 6.签到数量少于3次的地点,删除 7.提取目标值y 8.数据分割 第二部分:特征工程 标准化 第三部分:进行算法流程 1.算法执行 2.预测结果 3.检验效果 一.k-近邻算法原理及API 1.k-近邻算法原理 如果一个样本在特征空间中的k个最相

  • python机器学习基础特征工程算法详解

    目录 一.机器学习概述 二.数据集的构成 1.数据集存储 2.可用的数据集 3.常用数据集的结构 三.特征工程 1.字典数据特征抽取 2.文本特征抽取 3.文本特征抽取:tf-idf 4.特征预处理:归一化 5.特征预处理:标准化 6.特征预处理:缺失值处理 一.机器学习概述 机器学习是从数据中,自动分析获得规律(模型),并利用规律对未知数据进行预测. 二.数据集的构成 1.数据集存储 机器学习的历史数据通常使用csv文件存储. 不用mysql的原因: 1.文件大的话读取速度慢: 2.格式不符合

  • 可能是你看过最全的十大排序算法详解(完整版代码)

    目录 前言 交集排序 冒泡 简单 快速排序 插入排序 直接插入排序 希尔排序 选择排序 简单选择排序 堆排序 归并排序 二路 多路 非比较类 计数排序 桶排序 基数排序 最后 前言 兄弟们,应上篇数据结构的各位要求,今天我开始工作了,开始肝算法,剑指offer还在路上,我真想开车去接它,奈何码神没有驾照的开车,算了,弄排序算法吧,有点长,耐心看啊,原创不易,你们懂的,先上一张图 可以看出排序算法,还是比较多的,算了,不多说了,你我肝完就是出门自带4年实习经验的! 交集排序 冒泡 冒泡我一般也将它

  • Python机器学习之PCA降维算法详解

    一.算法概述 主成分分析 (Principal ComponentAnalysis,PCA)是一种掌握事物主要矛盾的统计分析方法,它可以从多元事物中解析出主要影响因素,揭示事物的本质,简化复杂的问题. PCA 是最常用的一种降维方法,它的目标是通过某种线性投影,将高维的数据映射到低维的空间中,并期望在所投影的维度上数据的方差最大,以此使用较少的维度,同时保留较多原数据的维度. PCA 算法目标是求出样本数据协方差矩阵的特征值和特征向量,而协方差矩阵的特征向量的方向就是PCA需要投影的方向.使样本

  • javascript常用经典算法详解

    阅读目录 冒泡排序 插入排序 希尔排序 归并排序 快速排序 选择排序 奇偶排序 总结 前言:在前端大全中看到这句话,以此共勉.基础决定你可能达到的高度, 而业务决定了你的最低瓶颈 其实javascript算法在平时的编码中用处不大,不过不妨碍我们学习它,学习一下这些算法的思想,锻炼一下自己的思维模式. 本文不会每种方法都介绍一下,只介绍一下七种,纯属为了学习而学习,如果觉得代码不是很好理解,可以将数组里面的内容代入函数里面. 不过刚开始理解的时候确实挺头疼的.废话少说,搞起来!! 冒泡排序 原理

  • python机器学习基础线性回归与岭回归算法详解

    目录 一.什么是线性回归 1.线性回归简述 2.数组和矩阵 数组 矩阵 3.线性回归的算法 二.权重的求解 1.正规方程 2.梯度下降 三.线性回归案例 1.案例概述 2.数据获取 3.数据分割 4.数据标准化 5.模型训练 6.回归性能评估 7.梯度下降与正规方程区别 四.岭回归Ridge 1.过拟合与欠拟合 2.正则化 一.什么是线性回归 1.线性回归简述 线性回归,是一种趋势,通过这个趋势,我们能预测所需要得到的大致目标值.线性关系在二维中是直线关系,三维中是平面关系. 我们可以使用如下模

  • C语言数据结构经典10大排序算法刨析

    1.冒泡排序 // 冒泡排序 #include <stdlib.h> #include <stdio.h> // 采用两层循环实现的方法. // 参数arr是待排序数组的首地址,len是数组元素的个数. void bubblesort1(int *arr,unsigned int len) { if (len<2) return; // 数组小于2个元素不需要排序. int ii; // 排序的趟数的计数器. int jj; // 每趟排序的元素位置计数器. int itmp

  • Python机器学习之K-Means聚类实现详解

    本文为大家分享了Python机器学习之K-Means聚类的实现代码,供大家参考,具体内容如下 1.K-Means聚类原理 K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大.其基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类.通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果.各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开. 算法大致流程为:(1)随机选取k个点作为种子点(这k个点不一定属于数据集)

  • Python实现聚类K-means算法详解

    目录 手动实现 sklearn库中的KMeans K-means(K均值)算法是最简单的一种聚类算法,它期望最小化平方误差 注:为避免运行时间过长,通常设置一个最大运行轮数或最小调整幅度阈值,若到达最大轮数或调整幅度小于阈值,则停止运行. 下面我们用python来实现一下K-means算法:我们先尝试手动实现这个算法,再用sklearn库中的KMeans类来实现.数据我们采用<机器学习>的西瓜数据(P202表9.1): # 下面的内容保存在 melons.txt 中 # 第一列为西瓜的密度:第

随机推荐