Python排序搜索基本算法之归并排序实例分析
本文实例讲述了Python排序搜索基本算法之归并排序。分享给大家供大家参考,具体如下:
归并排序最令人兴奋的特点是:不论输入是什么样的,它对N个元素的序列排序所用时间与NlogN成正比。代码如下:
# coding:utf-8 def mergesort(seq): if len(seq)<=1: return seq mid=int(len(seq)/2) left=mergesort(seq[:mid]) right=mergesort(seq[mid:]) return merge(left,right) def merge(left,right): result=[] i,j=0,0 while i<len(left) and j<len(right): if left[i]<=right[j]: result.append(left[i]) i+=1 else: result.append(right[j]) j+=1 result+=left[i:] result+=right[j:] return result if __name__=='__main__': print("我们测试结果:") seq=[4,5,7,9,7,5,1,0,7,-2,3,-99,6] print(mergesort(seq))
运行结果:
PS:这里再为大家推荐一款关于排序的演示工具供大家参考:
在线动画演示插入/选择/冒泡/归并/希尔/快速排序算法过程工具:
http://tools.jb51.net/aideddesign/paixu_ys
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python加密解密算法与技巧总结》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》
希望本文所述对大家Python程序设计有所帮助。
相关推荐
-
python 实现归并排序算法
理论不多说: 复制代码 代码如下: #!/usr/bin/python import sys def merge(array, q, p, r): left_array = array[q:p+1] right_array = array[p+1:r+1] left_array_num = len(left_array) right_array_num = len(right_array) i, j , k= [0, 0, q] while i < left_array_num and j <
-
python选择排序算法的实现代码
1.算法:对于一组关键字{K1,K2,-,Kn}, 首先从K1,K2,-,Kn中选择最小值,假如它是 Kz,则将Kz与 K1对换:然后从K2,K3,- ,Kn中选择最小值 Kz,再将Kz与K2对换.如此进行选择和调换n-2趟,第(n-1)趟,从Kn-1.Kn中选择最小值 Kz将Kz与Kn-1对换,最后剩下的就是该序列中的最大值,一个由小到大的有序序列就这样形成. 2.python 选择排序代码: 复制代码 代码如下: def selection_sort(list2): for i in
-
python 实现堆排序算法代码
复制代码 代码如下: #!/usr/bin/python import sys def left_child(node): return node * 2 + 1 def right_child(node): return node * 2 + 2 def parent(node): if (node % 2): return (i - 1) / 2 else: return (i - 2) / 2 def max_heapify(array, i, heap_size): l = left_c
-
python实现折半查找和归并排序算法
今天依旧是学算法,前几天在搞bbs项目,界面也很丑,评论功能好像也有BUG.现在不搞了,得学下算法和数据结构,笔试过不了,连面试的机会都没有-- 今天学了折半查找算法,折半查找是蛮简单的,但是归并排序我就挺懵比,看教材C语言写的归并排序看不懂,后来参考了别人的博客,终于搞懂了. 折半查找 先看下课本对于 折半查找的讲解.注意了,折半查找是对于有序序列而言的.每次折半,则查找区间大约缩小一半.low,high分别为查找区间的第一个下标与最后一个下标.出现low>high时,说明目标关键字在整个有序
-
八大排序算法的Python实现
Python实现八大排序算法,具体内容如下 1.插入排序 描述 插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的.个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2).是稳定的排序方法.插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插入的位置),而第二部分就只包含这一个元素(即待插入元素).在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中. 代码实现 def inser
-
Python编程中归并排序算法的实现步骤详解
基本思想:归并排序是一种典型的分治思想,把一个无序列表一分为二,对每个子序列再一分为二,继续下去,直到无法再进行划分为止.然后,就开始合并的过程,对每个子序列和另外一个子序列的元素进行比较,依次把小元素放入结果序列中进行合并,最终完成归并排序. 归并操作过程: 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列 设定两个指针,最初位置分别为两个已经排序序列的起始位置 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置 重复步骤3直到某一指针达到序列尾
-
python 实现插入排序算法
复制代码 代码如下: #!/usr/bin/python def insert_sort(array): for i in range(1, len(array)): key = array[i] j = i - 1 while j >= 0 and key < array[j]: array[j + 1] = array[j] j-=1 array[j + 1] = key if __name__ == "__main__": array = [2, 4, 32, 64,
-
Python实现的归并排序算法示例
本文实例讲述了Python实现的归并排序算法.分享给大家供大家参考,具体如下: 归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用. 将已有序的子序列合并,得到完全有序的序列:即先使每个子序列有序,再使子序列段间有序.若将两个有序表合并成一个有序表,称为二路归并. Python实现代码如下: #-*- coding: UTF-8 -*- import numpy as np def Merge(a, f, m, l):
-
Python实现的数据结构与算法之快速排序详解
本文实例讲述了Python实现的数据结构与算法之快速排序.分享给大家供大家参考.具体分析如下: 一.概述 快速排序(quick sort)是一种分治排序算法.该算法首先 选取 一个划分元素(partition element,有时又称为pivot):接着重排列表将其 划分 为三个部分:left(小于划分元素pivot的部分).划分元素pivot.right(大于划分元素pivot的部分),此时,划分元素pivot已经在列表的最终位置上:然后分别对left和right两个部分进行 递归排序. 其中
-
python实现的各种排序算法代码
复制代码 代码如下: # -*- coding: utf-8 -*-# 测试各种排序算法# link:www.jb51.net# date:2013/2/2 #选择排序def select_sort(sort_array): for i, elem in enumerate(sort_array): for j, elem in enumerate(sort_array[i:]): if sort_array[i] > sort_array[j + i]
-
python 算法 排序实现快速排序
QUICKSORT(A, p, r)是快速排序的子程序,调用划分程序对数组进行划分,然后递归地调用QUICKSORT(A, p, r),以完成快速排序的过程.快速排序的最差时间复杂度为O(n2),平时时间复杂度为O(nlgn).最差时间复杂度的情况为数组基本有序的时候,平均时间复杂度为数组的数值分布较为平均的时候.在平时情况下快速排序跟堆排序的时间复杂度都为O(nlgn),但是快速排序的常数项较小,所以要优于堆排序. PARTITION(A, p, r) 复制代码 代码如下: x ← A[r]
随机推荐
- windows下apache+php+mysql 环境配置方法
- 深入解析Java中的Class Loader类加载器
- MySQL中临时表的基本创建与使用教程
- 一份老外写的XMLHttpRequest代码多浏览器支持兼容性
- Ajax分页插件Pagination从前台jQuery到后端java总结
- php将文件夹打包成zip文件的简单实现方法
- php实现的替换敏感字符串类实例
- PHP中类的自动加载的方法
- 深入理解Python中装饰器的用法
- C语言实现在windows服务中新建进程的方法
- Windows下获取Android 源码方法的详解
- 提高MySQL中InnoDB表BLOB列的存储效率的教程
- PHP中获取文件扩展名的N种方法小结
- Mysql半同步复制原理及问题排查
- JavaScript学习笔记之惰性函数示例详解
- PHP使用PDO操作数据库的乱码问题解决方法
- iexplore.exe在打开网页时CPU使用会100%的解决方法
- 深入理解C#中常见的委托
- NopCommerce架构分析之(七)主题Theme皮肤管理器
- JavaScript版DateAdd和DateDiff函数代码