Python图形绘制操作之正弦曲线实现方法分析
本文实例讲述了Python图形绘制操作之正弦曲线实现方法。分享给大家供大家参考,具体如下:
要画正弦曲线先设定一下x的取值范围,从0到2π。要用到numpy模块。
numpy.pi
表示π
numpy.arange( 0 , 2π ,0.01)
从0到2π,以0.01步进。
令
x=numpy.arange( 0, 2*numpy.pi, 0.01) y=numpy.sin(x)
画图要用到matplotlib.pyplot模块中plot方法。
plot(x,y) pyplot.plot.show()
完整代码如下:
import numpy as np import matplotlib.pyplot as plt x=np.arange(0,2*np.pi,0.01) y=np.sin(x) plt.plot(x,y) plt.show()
此图有些单调的话,可以添加一些东西装饰一下。
plt.xlabel("x轴标签")
plt.ylabel("y轴标签")
plt.title("图像标题")
plt.xlim(0,5) 在画好的图形中选取x范围内的图形片段。
plt.ylim(0,5) y片段
plt.plot(x,y,linewidth=4) 设置线的宽度
plt.plot(x,y,"g字符") g代表绿色 后面的字符表示线的种类。如虚线,点线等
{y:黄色 b:黑色 c:灰色 默认为蓝色}
字符-类型
y1=sin(x) y2=cos(x)
可以把两条曲线画在同一图中
plt.plot(x1,y1,x2,y2)
更多关于Python相关内容可查看本站专题:《Python数学运算技巧总结》、《Python正则表达式用法总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》
希望本文所述对大家Python程序设计有所帮助。
相关推荐
-
Python使用plotly绘制数据图表的方法
导语:使用 python-plotly 模块来进行压测数据的绘制,并且生成静态 html 页面结果展示. 不少小伙伴在开发过程中都有对模块进行压测的经历,压测结束后大家往往喜欢使用Excel处理压测数据并绘制数据可视化视图,但这样不能很方便的使用web页面进行数据展示.本文将介绍使用python-plotly模块来进行压测数据的绘制,并且生成静态html页面方便结果展示. Plotly简介 Plotly是一款使用JavaScript开发的制图工具,提供了与主流数据分析语言交互的API(如:Pyt
-
python实现绘制树枝简单示例
python是解释型语言,本文介绍了Python下利用turtle实现绘图功能的示例,本例所示为Python绘制一个树枝,具体实现代码如下: python是解释型语言,本文介绍了Python下利用turtle实现绘图功能的示例,本例所示为Python绘制一个树枝,具体实现代码如下: import turtle def branch(length,level): if level<=0: return turtle.forward(length) turtle.left(45) branch(0.
-
python中Matplotlib实现绘制3D图的示例代码
Matplotlib 也可以绘制 3D 图像,与二维图像不同的是,绘制三维图像主要通过 mplot3d 模块实现.但是,使用 Matplotlib 绘制三维图像实际上是在二维画布上展示,所以一般绘制三维图像时,同样需要载入 pyplot 模块. mplot3d 模块下主要包含 4 个大类,分别是: mpl_toolkits.mplot3d.axes3d() mpl_toolkits.mplot3d.axis3d() mpl_toolkits.mplot3d.art3d() mpl_toolkit
-
Python使用matplotlib绘制动画的方法
本文实例讲述了Python使用matplotlib绘制动画的方法.分享给大家供大家参考.具体分析如下: matplotlib从1.1.0版本以后就开始支持绘制动画 下面是几个的示例: 第一个例子使用generator,每隔两秒,就运行函数data_gen: # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation fig =
-
python使用matplotlib绘制折线图教程
matplotlib简介 matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图.而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中. 它的文档相当完备,并且Gallery页面中有上百幅缩略图,打开之后都有源程序.因此如果你需要绘制某种类型的图,只需要在这个页面中浏览/复制/粘贴一下,基本上都能搞定. 在Linux下比较著名的数据图工具还有gnuplot,这个是免费的,Python有一个包可以调用gnuplot,但是语法比较不
-
python使用matplotlib绘制柱状图教程
Matplotlib的概念这里就不多介绍了,关于绘图库Matplotlib的安装方法:点击这里 小编之前也和大家分享过python使用matplotlib实现的折线图和制饼图效果,感兴趣的朋友们也可以点击查看,下面来看看python使用matplotlib绘制柱状图的方法吧,具体如下: 1. 基本的柱状图 import matplotlib.pyplot as plt data = [5, 20, 15, 25, 10] plt.bar(range(len(data)), data) plt.s
-
利用Python绘制数据的瀑布图的教程
介绍 对于绘制某些类型的数据来说,瀑布图是一种十分有用的工具.不足为奇的是,我们可以使用Pandas和matplotlib创建一个可重复的瀑布图. 在往下进行之前,我想先告诉大家我指代的是哪种类型的图表.我将建立一个维基百科文章中描述的2D瀑布图. 这种图表的一个典型的用处是显示开始值和结束值之间起"桥梁"作用的+和-的值.因为这个原因,财务人员有时会将其称为一个桥梁.跟我之前所采用的其他例子相似,这种类型的绘图在Excel中不容易生成,当然肯定有生成它的方法,但是不容易记住. 关于瀑
-
python利用matplotlib库绘制饼图的方法示例
介绍 matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图.而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中. 它的文档相当完备,并且 Gallery页面 中有上百幅缩略图,打开之后都有源程序.因此如果你需要绘制某种类型的图,只需要在这个页面中浏览/复制/粘贴一下,基本上都能搞定. matplotlib的安装方法可以点击这里 这篇文章给大家主要介绍了python用matplotlib绘制饼图的方法,话不多说,下面来看代码
-
Python实现曲线点抽稀算法的示例
本文介绍了Python实现曲线点抽稀算法的示例,分享给大家,具体如下: 目录 何为抽稀 道格拉斯-普克(Douglas-Peuker)算法 垂距限值法 最后 正文 何为抽稀 在处理矢量化数据时,记录中往往会有很多重复数据,对进一步数据处理带来诸多不便.多余的数据一方面浪费了较多的存储空间,另一方面造成所要表达的图形不光滑或不符合标准.因此要通过某种规则,在保证矢量曲线形状不变的情况下, 最大限度地减少数据点个数,这个过程称为抽稀. 通俗的讲就是对曲线进行采样简化,即在曲线上取有限个点,将其变为折
-
使用python绘制常用的图表
本文介绍如果使用python汇总常用的图表,与Excel的点选操作相比,用python绘制图表显得比较比较繁琐,尤其提现在对原始数据的处理上.但两者在绘制图表过程中的思路大致相同,Excel中能完成的工作python大多也能做到.为了更清晰的说明使用python绘制图表的过程,我们在汇总图表的代码中进行注解,说明每一行代码的具体作用.并在文章的最后给出了自定义字体和图表配色的对应表. 准备工作 import numpy as np import pandas as pd #导入图表库以进行图表绘
-
利用Python画ROC曲线和AUC值计算
前言 ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣.这篇文章将先简单的介绍ROC和AUC,而后用实例演示如何python作出ROC曲线图以及计算AUC. AUC介绍 AUC(Area Under Curve)是机器学习二分类模型中非常常用的评估指标,相比于F1-Score对项目的不平衡有更大的容忍性,目前常见的机器学习库中(比如scikit-learn)一般也都是集成该指标的计算,但
-
Python绘制3d螺旋曲线图实例代码
Line plots Axes3D.plot(xs, ys, *args, **kwargs) 绘制2D或3D数据 参数 描述 xs, ys X轴,Y轴坐标定点 zs Z值,每一个点的值都是1 zdir 绘制2D集合时使用z的方向 其他的参数:plot() Python代码: import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as
随机推荐
- 利用DataSet部分功能实现网站登录
- 基于JQuery的6个Tab选项卡插件
- 详解Spring简单容器中的Bean基本加载过程
- Hadoop多Job并行处理的实例详解
- 禁止iPhone Safari video标签视频自动全屏的办法
- Java使用正则表达式判断字符串是否以字符开始
- Android 有效的解决内存泄漏的问题实例详解
- Linux mysql命令安装允许远程连接的安装设置方法
- js 动态创建 html元素
- 并发数据库压力测试的shell脚本代码
- SQLSERVER聚集索引和主键(Primary Key)的误区认识
- 详解MySQL分组排序求Top N
- JavaScript面对国际化编程时的一些建议
- win2003禁止web等目录执行exe,bat,com的方法
- java中LinkedBlockingQueue与ArrayBlockingQueue的异同
- 动态组合SQL语句方式实现批量更新的实例
- JS给Array添加是否包含字符串的简单方法
- linux性能调试之vmstat分析
- 详解linux驱动编写(入门)
- Python实现的连接mssql数据库操作示例