Java实现单向链表的基本功能详解

一、前言

最近在回顾数据结构与算法,有部分的算法题用到了栈的思想,说起栈又不得不说链表了。数组和链表都是线性存储结构的基础,栈和队列都是线性存储结构的应用~

本文主要讲解单链表的基础知识点,做一个简单的入门~如果有错的地方请指正

二、回顾与知新

说起链表,我们先提一下数组吧,跟数组比较一下就很理解链表这种存储结构了。

2.1回顾数组

数组我们无论是C、Java都会学过:

  • 数组是一种连续存储线性结构,元素类型相同,大小相等

数组的优点:

  • 存取速度快

数组的缺点:

  • 事先必须知道数组的长度
  • 插入删除元素很慢
  • 空间通常是有限制的
  • 需要大块连续的内存块
  • 插入删除元素的效率很低

2.2链表说明

看完了数组,回到我们的链表:

  • 链表是离散存储线性结构

n个节点离散分配,彼此通过指针相连,每个节点只有一个前驱节点,每个节点只有一个后续节点,首节点没有前驱节点,尾节点没有后续节点。

链表优点:

  • 空间没有限制
  • 插入删除元素很快

链表缺点:

  • 存取速度很慢

链表相关术语介绍,我还是通过上面那个图来说明吧:

确定一个链表我们只需要头指针,通过头指针就可以把整个链表都能推导出来了~

链表又分了好几类:

1、单向链表

  • 一个节点指向下一个节点

2、双向链表

  • 一个节点有两个指针域

3、循环链表

  • 能通过任何一个节点找到其他所有的节点,将两种(双向/单向)链表的最后一个结点指向第一个结点从而实现循环

操作链表要时刻记住的是:

节点中指针域指向的就是一个节点了!

三、Java实现链表

算法:

  • 遍历
  • 查找
  • 清空
  • 销毁
  • 求长度
  • 排序
  • 删除节点
  • 插入节点

首先,我们定义一个类作为节点

  • 数据域
  • 指针域

为了操作方便我就直接定义成public了。

public class Node {

 //数据域
 public int data;
 //指针域,指向下一个节点
 public Node next;
 public Node() {
 }

 public Node(int data) {
 this.data = data;
 }

 public Node(int data, Node next) {
 this.data = data;
 this.next = next;
 }
}

3.1创建链表(增加节点)

向链表中插入数据:

  • 找到尾节点进行插入
  • 即使头节点.next为null,不走while循环,也是将头节点与新节点连接的(我已经将head节点初始化过了,因此没必要判断头节点是否为null)~
 /**
 * 向链表添加数据
 *
 * @param value 要添加的数据
 */
 public static void addData(int value) {
 //初始化要加入的节点
 Node newNode = new Node(value);
 //临时节点
 Node temp = head;
 // 找到尾节点
 while (temp.next != null) {
 temp = temp.next;
 }
 // 已经包括了头节点.next为null的情况了~
 temp.next = newNode;
 }

3.2遍历链表

上面我们已经编写了增加方法,现在遍历一下看一下是否正确~~~

从首节点开始,不断往后面找,直到后面的节点没有数据:

 /**
 * 遍历链表
 *
 * @param head 头节点
 */
 public static void traverse(Node head) {
 //临时节点,从首节点开始
 Node temp = head.next;
 while (temp != null) {
 System.out.println("关注公众号Java3y:" + temp.data);
 //继续下一个
 temp = temp.next;
 }
 }

结果:

3.3插入节点

  • 插入一个节点到链表中,首先得判断这个位置是否是合法的,才能进行插入~
  • 找到想要插入的位置的上一个节点就可以了~
 /**
 * 插入节点
 *
 * @param head 头指针
 * @param index 要插入的位置
 * @param value 要插入的值
 */
 public static void insertNode(Node head, int index, int value) {
 //首先需要判断指定位置是否合法,
 if (index < 1 || index > linkListLength(head) + 1) {
 System.out.println("插入位置不合法。");
 return;
 }
 //临时节点,从头节点开始
 Node temp = head;
 //记录遍历的当前位置
 int currentPos = 0;
 //初始化要插入的节点
 Node insertNode = new Node(value);
 while (temp.next != null) {
 //找到上一个节点的位置了
 if ((index - 1) == currentPos) {
 //temp表示的是上一个节点
 //将原本由上一个节点的指向交由插入的节点来指向
 insertNode.next = temp.next;
 //将上一个节点的指针域指向要插入的节点
 temp.next = insertNode;
 return;
 }
 currentPos++;
 temp = temp.next;
 }
 }

3.4获取链表的长度

获取链表的长度就很简单了,遍历一下,每得到一个节点+1即可~

 /**
 * 获取链表的长度
 * @param head 头指针
 */
 public static int linkListLength(Node head) {
 int length = 0;
 //临时节点,从首节点开始
 Node temp = head.next;
 // 找到尾节点
 while (temp != null) {
 length++;
 temp = temp.next;
 }
 return length;
 }

3.5删除节点

删除某个位置上的节点其实是和插入节点很像的, 同样都要找到上一个节点。将上一个节点的指针域改变一下,就可以删除了~

 /**
 * 根据位置删除节点
 *
 * @param head 头指针
 * @param index 要删除的位置
 */
 public static void deleteNode(Node head, int index) {
 //首先需要判断指定位置是否合法,
 if (index < 1 || index > linkListLength(head) + 1) {
  System.out.println("删除位置不合法。");
  return;
 }

 //临时节点,从头节点开始
 Node temp = head;
 //记录遍历的当前位置
 int currentPos = 0;
 while (temp.next != null) {
  //找到上一个节点的位置了
  if ((index - 1) == currentPos) {
  //temp表示的是上一个节点
  //temp.next表示的是想要删除的节点
  //将想要删除的节点存储一下
  Node deleteNode = temp.next;
  //想要删除节点的下一个节点交由上一个节点来控制
  temp.next = deleteNode.next;
  //Java会回收它,设置不设置为null应该没多大意义了(个人觉得,如果不对请指出哦~)
  deleteNode = null;
  return;
  }
  currentPos++;
  temp = temp.next;
 }
 }

3.6对链表进行排序

前面已经讲过了8种的排序算法了【八种排序算法总结】,这次挑简单的冒泡排序吧(其实我是想写快速排序的,尝试了一下感觉有点难.....)

 /**
 * 对链表进行排序
 *
 * @param head
 *
 */
 public static void sortLinkList(Node head) {
 Node currentNode;
 Node nextNode;
 for (currentNode = head.next; currentNode.next != null; currentNode = currentNode.next) {
  for (nextNode = head.next; nextNode.next != null; nextNode = nextNode.next) {
  if (nextNode.data > nextNode.next.data) {
   int temp = nextNode.data;
   nextNode.data = nextNode.next.data;
   nextNode.next.data = temp;
  }
  }
 }
 }

3.7找到链表中倒数第k个节点

这个算法挺有趣的:设置两个指针p1、p2,让p2比p1快k个节点,同时向后遍历,当p2为空,则p1为倒数第k个节点

 /**
 * 找到链表中倒数第k个节点(设置两个指针p1、p2,让p2比p1快k个节点,同时向后遍历,当p2为空,则p1为倒数第k个节点
 *
 * @param head
 * @param k 倒数第k个节点
 */
 public static Node findKNode(Node head, int k) {
 if (k < 1 || k > linkListLength(head))
  return null;
 Node p1 = head;
 Node p2 = head;
 // p2比怕p1快k个节点
 for (int i = 0; i < k - 1; i++)
  p2 = p2.next;
 // 只要p2为null,那么p1就是倒数第k个节点了
 while (p2.next != null) {

  p2 = p2.next;
  p1 = p1.next;
 }
 return p1;
 }

3.8删除链表重复数据

跟冒泡排序差不多,只要它相等,就能删除了~

 /**
 * 删除链表重复数据(跟冒泡差不多,等于删除就是了)
 *
 * @param head 头节点
 */
 public static void deleteDuplecate(Node head) {
 //临时节点,(从首节点开始-->真正有数据的节点)
 Node temp = head.next;

 //当前节点(首节点)的下一个节点
 Node nextNode = temp.next;
 while (temp.next != null) {
  while (nextNode.next != null) {
  if (nextNode.next.data == nextNode.data) {
   //将下一个节点删除(当前节点指向下下个节点)
   nextNode.next = nextNode.next.next;
  } else {

   //继续下一个
   nextNode = nextNode.next;
  }
  }
  //下一轮比较
  temp = temp.next;
 }
 }

3.9查询链表的中间节点

这个算法也挺有趣的:一个每次走1步,一个每次走两步,走两步的遍历完,然后走一步的指针,那就是中间节点

 /**
 * 查询单链表的中间节点
 */
 public static Node searchMid(Node head) {
 Node p1 = head;
 Node p2 = head;
 // 一个走一步,一个走两步,直到为null,走一步的到达的就是中间节点
 while (p2 != null && p2.next != null && p2.next.next != null) {
  p1 = p1.next;
  p2 = p2.next.next;
 }
 return p1;
 }

3.10通过递归从尾到头输出单链表

 /**
 * 通过递归从尾到头输出单链表
 *
 * @param head 头节点
 */
 public static void printListReversely(Node head) {
 if (head != null) {
  printListReversely(head.next);
  System.out.println(head.data);
 }
 }

3.11反转链表

 /**
 * 实现链表的反转
 *
 * @param node 链表的头节点
 */
 public static Node reverseLinkList(Node node) {
 Node prev ;
 if (node == null || node.next == null) {
  prev = node;
 } else {
  Node tmp = reverseLinkList(node.next);
  node.next.next = node;
  node.next = null;
  prev = tmp;
 }
 return prev;
 }

反转链表参考自:http://www.jb51.net/article/136185.htm

四、最后

理解链表本身并不难,但做相关的操作就弄得头疼,head.next next next next ....(算法这方面我还是薄弱啊..脑子不够用了.....)写了两天就写了这么点东西...

操作一个链表只需要知道它的头指针就可以做任何操作了

1、添加数据到链表中

  • 遍历找到尾节点,插入即可(只要while(temp.next != null),退出循环就会找到尾节点)

2、遍历链表

  • 从首节点(有效节点)开始,只要不为null,就输出

3、给定位置插入节点到链表中

  • 首先判断该位置是否有效(在链表长度的范围内)
  • 找到想要插入位置的上一个节点
    将原本由上一个节点的指向交由插入的节点来指向
    上一个节点指针域指向想要插入的节点

4、获取链表的长度

  • 每访问一次节点,变量++操作即可

5、删除给定位置的节点

  • 首先判断该位置是否有效(在链表长度的范围内)
  • 找到想要插入位置的上一个节点
    将原本由上一个节点的指向后面一个节点

6、对链表进行排序

  • 使用冒泡算法对其进行排序

7、找到链表中倒数第k个节点

  • 设置两个指针p1、p2,让p2比p1快k个节点,同时向后遍历,当p2为空,则p1为倒数第k个节点

8、删除链表重复数据

  • 操作跟冒泡排序差不多,只要它相等,就能删除了~

9、查询链表的中间节点

  • 这个算法也挺有趣的:一个每次走1步,一个每次走两步,走两步的遍历完,然后走一步的指针,那就是中间节点

10、递归从尾到头输出单链表

  • 只要下面还有数据,那就往下找,递归是从最后往前翻。

11、反转链表

  • 有递归和非递归两种方式,我觉得是挺难的。可以到我给出的链接上查阅~

PS:每个人的实现都会不一样,所以一些小细节难免会有些变动,也没有固定的写法,能够实现对应的功能即可~

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对我们的支持。

参考资料:

  • http://www.cnblogs.com/whgk/p/6589920.html
  • https://www.cnblogs.com/bywallance/p/6726251.html

您可能感兴趣的文章:

  • java单向链表的实现实例
  • Java实现单向链表反转
(0)

相关推荐

  • Java实现单向链表反转

    本文实例为大家分享了Java实现单向链表反转的具体代码,供大家参考,具体内容如下 1.实现代码 public class LinkedListTest { public static void main(String[] args) { Node A = new Node("A"); Node B = new Node("B"); Node C = new Node("C"); Node D = new Node("D");

  • java单向链表的实现实例

    上代码喽~ 复制代码 代码如下: package ncu.com.app.chatpter_5; import java.util.Random; //结点类class Node { Object data; Node next; }//操作类class ListNode{ public Node first;  public int size;  public ListNode(){  first = null;  size = 0; } public void insertNode(Obje

  • Java实现单向链表的基本功能详解

    一.前言 最近在回顾数据结构与算法,有部分的算法题用到了栈的思想,说起栈又不得不说链表了.数组和链表都是线性存储结构的基础,栈和队列都是线性存储结构的应用- 本文主要讲解单链表的基础知识点,做一个简单的入门-如果有错的地方请指正 二.回顾与知新 说起链表,我们先提一下数组吧,跟数组比较一下就很理解链表这种存储结构了. 2.1回顾数组 数组我们无论是C.Java都会学过: 数组是一种连续存储线性结构,元素类型相同,大小相等 数组的优点: 存取速度快 数组的缺点: 事先必须知道数组的长度 插入删除元

  • Java 自定义Spring框架与核心功能详解

    目录 Spring核心功能结构 核心容器 spring-beans和spring-core模块 spring-context模块 spring-context-support模块 spring-context-indexer模块 spring-expression模块 AOP和设备支持 数据访问与集成 Web组件 通信报文 集成测试 bean概述 在上一讲中,我们对Spring的基本使用进行了一个简单的回顾,接下来,我们就来看一下Spring核心功能结构. Spring核心功能结构 Spring

  • C语言实现单链表的基本功能详解

    1.首先简单了解一下链表的概念: 要注意的是链表是一个结构体实现的一种线性表,它只能从前往后,不可以从后往前(因为next只保存下一个节点的地址).在实现单链表的操作时,需要用指针来操作.很简单,注释写的很详细,欢迎大家指正哈哈哈哈~之前写的太烂了重新写了一下..... 2.代码展示: #include <stdio.h> #include <assert.h> #include <stdlib.h> typedef struct linklist { int data

  • Java适配器模式应用之电源适配器功能详解

    本文实例讲述了Java适配器模式应用之电源适配器功能.分享给大家供大家参考,具体如下: 一.模式定义 存在两种适配器模式 1 对象适配器模式,在这种适配器模式中,适配器容纳一个它包裹的类对象的物理实体. 2 类适配器模式,在这种适配器模式中,适配器继承自已实现的类. 二.模式举例 1 模式分析 我们借用笔计本电源适配器来说明这一模式. 已经存在的交流电源 笔记本电脑 电源适配器 2 适配器模式的静态建模 3 代码举例 3.1 抽象电源建立 package com.demo.power; /**

  • Java NIO实战之聊天室功能详解

    本文实例讲述了Java NIO实战之聊天室功能.分享给大家供大家参考,具体如下: 在工作之余花了两个星期看完了<Java NIO>,总体来说这本书把NIO写的很详细,没有过多的废话,讲的都是重点,只是翻译的中文版看的确实吃力,英文水平太低也没办法,总算也坚持看完了.<Java NIO>这本书的重点在于第四章讲解的"选择器",要理解透还是要反复琢磨推敲:愚钝的我花了大概3天的时间才将NIO的选择器机制理解透并能较熟练的运用,于是便写了这个聊天室程序. 下面直接上代

  • java(jsp)整合discuz同步登录功能详解

    最近做了一个资源库系统的项目,老师说可以搭建开源论坛替代自己开发社交模块,正好在开源中国上看到了一个利用discuz的UCenter功能实现同步登录的开源项目(https://code.google.com/p/discuz-ucenter-api-for-java/),不禁大喜,于是花了几个小时照着教程操作了一遍,居然很轻松的成功了,特写此文以做纪念.. Uenter是Comsenz旗下各个产品之间信息直接传递的一个桥梁,通过UCenter站长可以无缝整合Comsenz系列产品,实现用户的一站

  • python中print()函数的“,”与java中System.out.print()函数中的“+”功能详解

    python中的print()函数和java中的System.out.print()函数都有着打印字符串的功能. python中: print("hello,world!") 输出结果为:hello,world! java中: System.out.print("hello,world!"); 输出结果为:hello,world! 我们可以看到,这两个函数的用法是一样的 print()函数还有这种用法: print("1+1=",1+1) 输出结

  • java使用单向链表解决数据存储自定义排序问题

    目录 表设计 1. 新增一条记录 2. 修改排序 3. 删除 代码实现 1. 简单对象 2. 对数据按照 nextId 排序 3. 输出结果 表设计 CREATE TABLE `test` ( `id` bigint NOT NULL COMMENT '主键id', `name` varchar(50) COLLATE NOT NULL COMMENT '名称', `next_id` bigint DEFAULT NULL COMMENT '指向下一个节点的主键id', ) ; 1. 新增一条记

  • Go语言利用接口实现链表插入功能详解

    目录 1. 接口定义 1.1 空接口 1.2 实现单一接口 1.3 接口多方法实现 2. 多态 2.1 为不同数据类型的实体提供统一的接口 2.2 多接口的实现 3. 系统接口调用 4. 接口嵌套 5. 类型断言 5.1 断言判断 5.2 多类型判断 6. 使用接口实现链表插入 1. 接口定义 Interface 类型可以定义一组方法,不需要实现,并且不能包含任何的变量,称之为接口 接口不需要显示的实现,只需要一个变量,含有接口类型中的所有方法,那么这个变量就实现了这个接口,如果一个变量含有多个

随机推荐