Python 普通最小二乘法(OLS)进行多项式拟合的方法

多元函数拟合。如 电视机和收音机价格多销售额的影响,此时自变量有两个。

python 解法:

import numpy as np
import pandas as pd
#import statsmodels.api as sm #方法一
import statsmodels.formula.api as smf #方法二
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

df = pd.read_csv('http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv', index_col=0)
X = df[['TV', 'radio']]
y = df['sales']

#est = sm.OLS(y, sm.add_constant(X)).fit() #方法一
est = smf.ols(formula='sales ~ TV + radio', data=df).fit() #方法二
y_pred = est.predict(X)

df['sales_pred'] = y_pred
print(df)
print(est.summary()) #回归结果
print(est.params) #系数

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d') #ax = Axes3D(fig)
ax.scatter(X['TV'], X['radio'], y, c='b', marker='o')
ax.scatter(X['TV'], X['radio'], y_pred, c='r', marker='+')
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
plt.show()

拟合的各项评估结果和参数都打印出来了,其中结果函数为:

f(sales) = β0 + β1*[TV] + β2*[radio]

f(sales) = 2.9211 + 0.0458 * [TV] + 0.188 * [radio]

图中,sales 方向上,蓝色点为原 sales 实际值,红色点为拟合函数计算出来的值。其实误差并不大,部分数据如下。

同样可拟合一元函数;

import numpy as np
import pandas as pd
import statsmodels.formula.api as smf
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

df = pd.read_csv('http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv', index_col=0)
X = df['TV']
y = df['sales']

est = smf.ols(formula='sales ~ TV ', data=df).fit()
y_pred = est.predict(X)
print(est.summary())
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(X, y, c='b')
ax.plot(X, y_pred, c='r')
plt.show()

Ridge Regression:(岭回归交叉验证)

岭回归(ridge regression, Tikhonov regularization)是一种专用于共线性数据分析的有偏估计回归方法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息、降低精度为代价获得回归系数更为符合实际、更可靠的回归方法,对病态数据的拟合要强于最小二乘法。通常岭回归方程的R平方值会稍低于普通回归分析,但回归系数的显著性往往明显高于普通回归,在存在共线性问题和病态数据偏多的研究中有较大的实用价值。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import linear_model
from mpl_toolkits.mplot3d import Axes3D

df = pd.read_csv('http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv', index_col=0)
X = np.asarray(df[['TV', 'radio']])
y = np.asarray(df['sales'])

clf = linear_model.RidgeCV(alphas=[i+1 for i in np.arange(200.0)]).fit(X, y)
y_pred = clf.predict(X)
df['sales_pred'] = y_pred
print(df)
print("alpha=%s, 常数=%.2f, 系数=%s" % (clf.alpha_ ,clf.intercept_,clf.coef_))

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(df['TV'], df['radio'], y, c='b', marker='o')
ax.scatter(df['TV'], df['radio'], y_pred, c='r', marker='+')
ax.set_xlabel('TV')
ax.set_ylabel('radio')
ax.set_zlabel('sales')
plt.show()

输出结果:alpha=150.0, 常数=2.94, 系数=[ 0.04575621 0.18735312]

以上这篇Python 普通最小二乘法(OLS)进行多项式拟合的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python中matplotlib实现最小二乘法拟合的过程详解

    前言 最小二乘法Least Square Method,做为分类回归算法的基础,有着悠久的历史(由马里·勒让德于1806年提出).它通过最小化误差的平方和寻找数据的最佳函数匹配.利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小.最小二乘法还可用于曲线拟合.其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达. 下面这篇文章主要跟大家介绍了关于python中matplotlib实现最小二乘法拟合的相关内容,下面话不多说,来一起看看详细的介绍:

  • 在python中利用最小二乘拟合二次抛物线函数的方法

    1.最小二乘也可以拟合二次函数 我们都知道用最小二乘拟合线性函数没有问题,那么能不能拟合二次函数甚至更高次的函数呢?答案当然是可以的.下面我们就来试试用最小二乘来拟合抛物线形状的的图像. 对于二次函数来说,一般形状为 f(x) = a*x*x+b*x+c,其中a,b,c为三个我们需要求解的参数.为了确定a.b.c,我们需要根据给定的样本,然后通过调整这些参数,知道最后找出一组参数a.b.c,使这些所有的样本点距离f(x)的距离平方和最小.用什么方法来调整这些参数呢?最常见的自然就是我们的梯度下降

  • Python中实现最小二乘法思路及实现代码

    之所以说"使用"而不是"实现",是因为python的相关类库已经帮我们实现了具体算法,而我们只要学会使用就可以了.随着对技术的逐渐掌握及积累,当类库中的算法已经无法满足自身需求的时候,我们也可以尝试通过自己的方式实现各种算法. 言归正传,什么是"最小二乘法"呢? 定义:最小二乘法(又称最小平方法)是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配. 作用:利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误

  • Python基于最小二乘法实现曲线拟合示例

    本文实例讲述了Python基于最小二乘法实现曲线拟合.分享给大家供大家参考,具体如下: 这里不手动实现最小二乘,调用scipy库中实现好的相关优化函数. 考虑如下的含有4个参数的函数式: 构造数据 import numpy as np from scipy import optimize import matplotlib.pyplot as plt def logistic4(x, A, B, C, D): return (A-D)/(1+(x/C)**B)+D def residuals(p

  • Python实现的多项式拟合功能示例【基于matplotlib】

    本文实例讲述了Python实现的多项式拟合功能.分享给大家供大家参考,具体如下: # -*- coding: utf-8 -*- #! python2 import numpy as np import matplotlib.pyplot as plt from pylab import mpl mpl.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体 plt.rcParams['axes.unicode_minus']=False #解决负数坐

  • 详解Pytorch 使用Pytorch拟合多项式(多项式回归)

    使用Pytorch来编写神经网络具有很多优势,比起Tensorflow,我认为Pytorch更加简单,结构更加清晰. 希望通过实战几个Pytorch的例子,让大家熟悉Pytorch的使用方法,包括数据集创建,各种网络层结构的定义,以及前向传播与权重更新方式. 比如这里给出 很显然,这里我们只需要假定 这里我们只需要设置一个合适尺寸的全连接网络,根据不断迭代,求出最接近的参数即可. 但是这里需要思考一个问题,使用全连接网络结构是毫无疑问的,但是我们的输入与输出格式是什么样的呢? 只将一个x作为输入

  • Python 普通最小二乘法(OLS)进行多项式拟合的方法

    多元函数拟合.如 电视机和收音机价格多销售额的影响,此时自变量有两个. python 解法: import numpy as np import pandas as pd #import statsmodels.api as sm #方法一 import statsmodels.formula.api as smf #方法二 import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D df = pd.read_c

  • 在python中利用numpy求解多项式以及多项式拟合的方法

    构建一个二阶多项式:x^2 - 4x + 3 多项式求解 >>> p = np.poly1d([1,-4,3]) #二阶多项式系数 >>> p(0) #自变量为0时多项式的值 3 >>> p.roots #多项式的根 array([3., 1.]) >>> p(p.roots) #多项式根处的值 array([0., 0.]) >>> p.order #多项式的阶数 2 >>> p.coeffs #

  • Python实现多项式拟合正弦函数详情

    目录 1. 实验目的 2. 实验要求 3. 实验内容 3.1 算法原理 1. 实验目的 掌握最小二乘法求解(无惩罚项的损失函数).掌握加惩罚项(2 范数)的损失函数优化.梯度下降法.共轭梯度法.理解过拟合.克服过拟合的方法(如加惩罚项.增加样本) 2. 实验要求 生成数据,加入噪声: 用高阶多项式函数拟合曲线: 用解析解求解两种 loss 的最优解(无正则项和有正则项) 优化方法求解最优解(梯度下降,共轭梯度): 用你得到的实验数据,解释过拟合. 用不同数据量,不同超参数,不同的多项式阶数,比较

  • Python 确定多项式拟合/回归的阶数实例

    通过 1至10 阶来拟合对比 均方误差及R评分,可以确定最优的"最大阶数". import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression,Perceptron from sklearn.metrics import mean_squared_

  • python多项式拟合之np.polyfit 和 np.polyld详解

    python数据拟合主要可采用numpy库,库的安装可直接用pip install numpy等. 1. 原始数据:假如要拟合的数据yyy来自sin函数,np.sin import numpy as np import matplotlib.pyplot as plt xxx = np.arange(0, 1000) # x值,此时表示弧度 yyy = np.sin(xxx*np.pi/180) #函数值,转化成度 2. 测试不同阶的多项式,例如7阶多项式拟合,使用np.polyfit拟合,np

  • 对python实现二维函数高次拟合的示例详解

    在参加"数据挖掘"比赛中遇到了关于函数高次拟合的问题,然后就整理了一下源码,以便后期的学习与改进. 在本次"数据挖掘"比赛中感觉收获最大的还是对于神经网络的认识,在接近一周的时间里,研究了进40种神经网络模型,虽然在持续一周的挖掘比赛把自己折磨的惨不忍睹,但是收获颇丰.现在想想也挺欣慰自己在这段时间里接受新知识的能力.关于神经网络方面的理解会在后续博文中补充(刚提交完论文,还没来得及整理),先分享一下高次拟合方面的知识. # coding=utf-8 import

  • python中最小二乘法详细讲解

    python中在实现一元线性回归时会使用最小二乘法,那你知道最小二乘法是什么吗.其实最小二乘法为分类回归算法的基础,从求解线性透视图中的消失点,m元n次函数的拟合,包括后来学到的神经网络,其思想归根结底全都是最小二乘法.本文向大家介绍python中的最小二乘法. 一.最小二乘法是什么 最小二乘法Least Square Method,做为分类回归算法的基础,有着悠久的历史(由马里·勒让德于1806年提出). 二.最小二乘法实现原理 通过最小化误差的平方和寻找数据的最佳函数匹配. 三.最小二乘法功

  • python实现三维拟合的方法

    如下所示: from matplotlib import pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = Axes3D(fig) #列出实验数据 point=[[2,3,48],[4,5,50],[5,7,51],[8,9,55],[9,12,56]] plt.xlabel("X1") plt.ylabel("X2") #

随机推荐