Python进程间通信之共享内存详解

前一篇博客说了怎样通过命名管道实现进程间通信,但是要在windows是使用命名管道,需要使用python调研windows api,太麻烦,于是想到是不是可以通过共享内存的方式来实现。查了一下,Python中可以使用mmap模块来实现这一功能。

Python中的mmap模块是通过映射同一个普通文件实现共享内存的。文件被映射到进程地址空间后,进程可以像访问内存一样对文件进行访问。

不过,mmap在linux和windows上的API有些许的不一样,具体细节可以查看mmap的文档。

下面看一个例子:

server.py

这个程序使用 test.dat 文件来映射内存,并且分配了1024字节的大小,每隔一秒更新一下内存信息。

import mmap
import contextlib
import time

with open("test.dat", "w") as f:
  f.write('\x00' * 1024)

with open('test.dat', 'r+') as f:
  with contextlib.closing(mmap.mmap(f.fileno(), 1024, access=mmap.ACCESS_WRITE)) as m:
    for i in range(1, 10001):
      m.seek(0)
      s = "msg " + str(i)
      s.rjust(1024, '\x00')
      m.write(s)
      m.flush()
      time.sleep(1)

client.py

这个程序从上面映射的文件 test.dat 中加载数据到内存中。

import mmap
import contextlib
import time

while True:
  with open('test.dat', 'r') as f:
    with contextlib.closing(mmap.mmap(f.fileno(), 1024, access=mmap.ACCESS_READ)) as m:
      s = m.read(1024).replace('\x00', '')
      print s
  time.sleep(1)

上面的代码可以在linux和windows上运行,因为我们明确指定了使用 test.dat 文件来映射内存。如果我们只需要在windows上实现共享内存,可以不用指定使用的文件,而是通过指定一个tagname来标识,所以可以简化上面的代码。如下:

server.py

import mmap
import contextlib
import time

with contextlib.closing(mmap.mmap(-1, 1024, tagname='test', access=mmap.ACCESS_WRITE)) as m:
  for i in range(1, 10001):
    m.seek(0)
    m.write("msg " + str(i))
    m.flush()
    time.sleep(1)

client.py

import mmap
import contextlib
import time

while True:
  with contextlib.closing(mmap.mmap(-1, 1024, tagname='test', access=mmap.ACCESS_READ)) as m:
    s = m.read(1024).replace('\x00', '')
    print s
  time.sleep(1)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python 多进程通信模块的简单实现

    多进程通信方法好多,不一而数.刚才试python封装好嘅多进程通信模块 multiprocessing.connection. 简单测试咗一下,效率还可以,应该系对socket封装,效率可以达到4krps,可以满足好多方面嘅需求啦. 附代码如下: client 复制代码 代码如下: #!/usr/bin/python# -*- coding: utf-8 -*-""" download - slave"""__author__ = 'Zagfai

  • Python进程通信之匿名管道实例讲解

    匿名管道 管道是一个单向通道,有点类似共享内存缓存.管道有两端,包括输入端和输出端.对于一个进程的而言,它只能看到管道一端,即要么是输入端要么是输出端. os.pipe()返回2个文件描述符(r, w),表示可读的和可写的.示例代码如下: 复制代码 代码如下: #!/usr/bin/python import time import os def child(wpipe):     print('hello from child', os.getpid())     while True:   

  • 详解Python进程间通信之命名管道

    管道是一种简单的FIFO通信信道,它是单向通信的. 通常启动进程创建一个管道,然后这个进程创建一个或者多个进程子进程接受管道信息,由于管道是单向通信,所以经常需要创建两个管道来实现双向通信. 命名管道是对传统管道的扩展,默认的管道是匿名管道,只在程序运行时存在:而命名管道是持久化的,当不需要时需要删除它. 命名管道使用文件系统,由mkfifo()方法创建.一旦创建了,两个独立的进程都可以访问它,一个读,另外一个写. 命名管道支持阻塞读和阻塞写操作: 如果一个进程打开文件读,它会阻塞直到另外一个进

  • python实现进程间通信简单实例

    本文实例讲解了python实现两个程序之间通信的方法,具体方法如下: 该实例采用socket实现,与socket网络编程不一样的是socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)的第一个参数是socket.AF_UNIX 而不是 socket.AF_INET 例中两个python程序 s.py/c.py 要先运行s.py 基于fedora13/python2.6测试,成功实现! s.py代码如下: #!/usr/bin/env python im

  • Python进程间通信用法实例

    本文实例讲述了Python进程间通信用法.分享给大家供大家参考.具体如下: #!/usr/bin/env python # -*- coding=utf-8 -*- import multiprocessing def counsumer(input_q): while True: item = input_q.get() #处理项目 print item #此处替换为有用的工作 #发出信号通知任务完成 input_q.task_done() def producer(sequence,outp

  • python执行子进程实现进程间通信的方法

    本文实例讲述了python执行子进程实现进程间通信的方法.分享给大家供大家参考.具体实现方法如下: a.py: import subprocess, time subproc = subprocess.Popen(['c:\python31\python.exe', 'c:/b.py'], stdin=subprocess.PIPE, shell=True) time.sleep(0.5) print('start') subproc.stdin.write('data\n') subproc.

  • Python多进程通信Queue、Pipe、Value、Array实例

    queue和pipe的区别: pipe用来在两个进程间通信.queue用来在多个进程间实现通信. 此两种方法为所有系统多进程通信的基本方法,几乎所有的语言都支持此两种方法. 1)Queue & JoinableQueue queue用来在进程间传递消息,任何可以pickle-able的对象都可以在加入到queue. multiprocessing.JoinableQueue 是 Queue的子类,增加了task_done()和join()方法. task_done()用来告诉queue一个tas

  • Python进程间通信之共享内存详解

    前一篇博客说了怎样通过命名管道实现进程间通信,但是要在windows是使用命名管道,需要使用python调研windows api,太麻烦,于是想到是不是可以通过共享内存的方式来实现.查了一下,Python中可以使用mmap模块来实现这一功能. Python中的mmap模块是通过映射同一个普通文件实现共享内存的.文件被映射到进程地址空间后,进程可以像访问内存一样对文件进行访问. 不过,mmap在linux和windows上的API有些许的不一样,具体细节可以查看mmap的文档. 下面看一个例子:

  • python进程间通信Queue工作过程详解

    Process之间有时需要通信,操作系统提供了很多机制来实现进程间的通信. 1. Queue的使用 可以使用multiprocessing模块的Queue实现多进程之间的数据传递,Queue本身是一个消息列队程序,首先用一个小实例来演示一下Queue的工作原理: import multiprocessing q = multiprocessing.Queue(3) # 初始化的Queue对象,最多能put三条消息 q.put("消息1") q.put("消息2")

  • Python标准库学习之psutil内存详解

    目录 查询CPU信息 查询内存信息 查询磁盘信息 查询网络信息 查询进程信息 人生苦短,快学Python! 今天介绍的是psutil模块,它是一个跨平台库 https://github.com/giampaolo/psutil 命令行下通过pip安装: pip install psutil 如果跟我一样安装的是Anaconda,则剩下这步了,因为自带了. 顾名思义 psutil = process and system utilities 它专门用来获取操作系统以及硬件相关的信息,比如:CPU.

  • python多线程和多进程关系详解

    关于多线程的大概讲解: 在Python的标准库中给出了2个模块:_thread和threading,_thread是低级模块不支持守护线程,当主线程退出了时,全部子线程都会被强制退出了.而threading是高级模块,用作对_thread进行了封装支持守护线程.在大部分状况下人们只需要采用threading这个高级模块即可. 关于多进程的大概讲解: 多进程是multiprocessing模块给出远程与本地的并发,在一个multiprocessing库的采用场景下,全部的子进程全是由一个父进程运行

  • Python任务调度利器之APScheduler详解

    任务调度应用场景 所谓的任务调度是指安排任务的执行计划,即何时执行,怎么执行等.在现实项目中经常出现它们的身影:特别是数据类项目,比如实时统计每5分钟网站的访问量,就需要每5分钟定时从日志数据分析访问量. 总结下任务调度应用场景: 离线作业调度:按时间粒度执行某项任务 共享缓存更新:定时刷新缓存,如redis缓存:不同进程间的共享数据 任务调度工具 linux的crontab, 支持按照分钟/小时/天/月/周粒度,执行任务 java的Quartz windows的任务计划 本文介绍的是pytho

  • Python中logger日志模块详解

    1 logging模块简介 logging模块是Python内置的标准模块,主要用于输出运行日志,可以设置输出日志的等级.日志保存路径.日志文件回滚等:相比print,具备如下优点: 可以通过设置不同的日志等级,在release版本中只输出重要信息,而不必显示大量的调试信息: print将所有信息都输出到标准输出中,严重影响开发者从标准输出中查看其它数据:logging则可以由开发者决定将信息输出到什么地方,以及怎么输出: Logger从来不直接实例化,经常通过logging模块级方法(Modu

  • python 多进程和多线程使用详解

    进程和线程 进程是系统进行资源分配的最小单位,线程是系统进行调度执行的最小单位: 一个应用程序至少包含一个进程,一个进程至少包含一个线程: 每个进程在执行过程中拥有独立的内存空间,而一个进程中的线程之间是共享该进程的内存空间的: 计算机的核心是CPU,它承担了所有的计算任务.它就像一座工厂,时刻在运行. 假定工厂的电力有限,一次只能供给一个车间使用.也就是说,一个车间开工的时候,其他车间都必须停工.背后的含义就是,单个CPU一次只能运行一个任务.编者注: 多核的CPU就像有了多个发电厂,使多工厂

  • python装饰器实例大详解

    一.作用域 在python中,作用域分为两种:全局作用域和局部作用域. 全局作用域是定义在文件级别的变量,函数名.而局部作用域,则是定义函数内部. 关于作用域,我们要理解两点: a.在全局不能访问到局部定义的变量 b.在局部能够访问到全局定义的变量,但是不能修改全局定义的变量(当然有方法可以修改) 下面我们来看看下面实例: x = 1 def funx(): x = 10 print(x) # 打印出10 funx() print(x) # 打印出1 如果局部没有定义变量x,那么函数内部会从内往

  • python 垃圾收集机制的实例详解

     python 垃圾收集机制的实例详解 pythonn垃圾收集方面的内容如果要细讲还是挺多的,这里只是做一个大概的概括 Python最主要和绝大多数时候用的都是引用计数,每一个PyObject定义如下: #define PyObject_HEAD \ Py_ssize_t ob_refcnt; \ struct _typeobject *ob_type; typedef struct _object { PyObject_HEAD } PyObject; 每个pyobject都有一个refcnt

  • Python进阶-函数默认参数(详解)

    一.默认参数 python为了简化函数的调用,提供了默认参数机制: def pow(x, n = 2): r = 1 while n > 0: r *= x n -= 1 return r 这样在调用pow函数时,就可以省略最后一个参数不写: print(pow(5)) # output: 25 在定义有默认参数的函数时,需要注意以下: 必选参数必须在前面,默认参数在后: 设置何种参数为默认参数?一般来说,将参数值变化小的设置为默认参数. python标准库实践 python内建函数: prin

随机推荐