MySQL COUNT(*)性能原理详解

目录
  • 前言
  • 1.COUNT(1)、COUNT(*)与COUNT(字段)哪个更快?
    • 实验分析
    • 实验结果
    • 实验结论
  • 2.COUNT(*)与TABLES_ROWS
  • 3.COUNT(*)是怎么样执行的?
  • 4.总结

前言

在实际开发过程中,统计一个表的数据量是经常遇到的需求,用来统计数据库表的行数都会使用COUNT(*)COUNT(1)或者COUNT(字段),但是表中的记录越来越多,使用COUNT(*)也会变得越来越慢,今天我们就来分析一下COUNT(*)的性能到底如何。

1.COUNT(1)、COUNT(*)与COUNT(字段)哪个更快?

执行效果:

  • COUNT(*)MySQL 对count(*)进行了优化,count(*)直接扫描主键索引记录,并不会把全部字段取出来,直接按行累加。
  • COUNT(1)InnoDB引擎遍历整张表,但不取值,server 层对于返回的每一行,放一个数字“1”进去,按行累加。
  • COUNT(字段)如果这个“字段”是定义为NOT NULL,那么InnoDB 引擎会一行行地从记录里面读出这个字段,server 层判断不能为NULL,按行累加;如果这个“字段”定义允许为NULL,那么InnoDB 引擎会一行行地从记录里面读出这个字段,然后把值取出来再判断一下,不是 NULL才累加。

实验分析

本文测试使用的环境:

[root@zhyno1 ~]# cat /etc/system-release
CentOS Linux release 7.9.2009 (Core)

[root@zhyno1 ~]# uname -a
Linux zhyno1 3.10.0-1160.62.1.el7.x86_64 #1 SMP Tue Apr 5 16:57:59 UTC 2022 x86_64 x86_64 x86_64 GNU/Linux

测试数据库采用的是(存储引擎采用InnoDB,其它参数默认):

(Mon Jul 25 09:41:39 2022)[root@GreatSQL][(none)]>select version();
+-----------+
| version() |
+-----------+
| 8.0.25-16 |
+-----------+
1 row in set (0.00 sec)

实验开始:

#首先我们创建一个实验表

CREATE TABLE test_count (
  `id` int(10) NOT NULL AUTO_INCREMENT PRIMARY KEY,
  `name` varchar(20) NOT NULL,
  `salary` int(1) NOT NULL,
  KEY `idx_salary` (`salary`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

#插入1000W条数据
DELIMITER //
CREATE PROCEDURE insert_1000w()
BEGIN
    DECLARE i INT;
    SET i=1;
    WHILE i<=10000000 DO
        INSERT INTO test_count(name,salary) VALUES('KAiTO',1);
        SET i=i+1;
    END WHILE;
END//
DELIMITER ;
#执行存储过程
call insert_1000w();

接下来我们分别来实验一下:

COUNT(1)花费了4.19秒

(Sat Jul 23 22:56:04 2022)[root@GreatSQL][test]>select count(1) from test_count;
+----------+
| count(1) |
+----------+
| 10000000 |
+----------+
1 row in set (4.19 sec)

COUNT(*)花费了4.16秒

(Sat Jul 23 22:57:41 2022)[root@GreatSQL][test]>select count(*) from test_count;
+----------+
| count(*) |
+----------+
| 10000000 |
+----------+
1 row in set (4.16 sec)

COUNT(字段)花费了4.23秒

(Sat Jul 23 22:58:56 2022)[root@GreatSQL][test]>select count(id) from test_count;
+-----------+
| count(id) |
+-----------+
|  10000000 |
+-----------+
1 row in set (4.23 sec)

我们可以再来测试一下执行计划

COUNT(*)

(Sat Jul 23 22:59:16 2022)[root@GreatSQL][test]>explain select count(*) from test_count;
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
| id | select_type | table      | partitions | type  | possible_keys | key        | key_len | ref  | rows    | filtered | Extra       |
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
|  1 | SIMPLE      | test_count | NULL       | index | NULL          | idx_salary | 4       | NULL | 9980612 |   100.00 | Using index |
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
1 row in set, 1 warning (0.01 sec)

(Sat Jul 23 22:59:48 2022)[root@GreatSQL][test]>show warnings;
+-------+------+-----------------------------------------------------------------------+
| Level | Code | Message                                                               |
+-------+------+-----------------------------------------------------------------------+
| Note  | 1003 | /* select#1 */ select count(0) AS `count(*)` from `test`.`test_count` |
+-------+------+-----------------------------------------------------------------------+
1 row in set (0.00 sec)

COUNT(1)

(Sat Jul 23 23:12:45 2022)[root@GreatSQL][test]>explain select count(1) from test_count;
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
| id | select_type | table      | partitions | type  | possible_keys | key        | key_len | ref  | rows    | filtered | Extra       |
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
|  1 | SIMPLE      | test_count | NULL       | index | NULL          | idx_salary | 4       | NULL | 9980612 |   100.00 | Using index |
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

(Sat Jul 23 23:13:02 2022)[root@GreatSQL][test]>show warnings;
+-------+------+-----------------------------------------------------------------------+
| Level | Code | Message                                                               |
+-------+------+-----------------------------------------------------------------------+
| Note  | 1003 | /* select#1 */ select count(1) AS `count(1)` from `test`.`test_count` |
+-------+------+-----------------------------------------------------------------------+
1 row in set (0.00 sec)

COUNT(字段)

(Sat Jul 23 23:13:14 2022)[root@GreatSQL][test]>explain select count(id) from test_count;
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
| id | select_type | table      | partitions | type  | possible_keys | key        | key_len | ref  | rows    | filtered | Extra       |
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
|  1 | SIMPLE      | test_count | NULL       | index | NULL          | idx_salary | 4       | NULL | 9980612 |   100.00 | Using index |
+----+-------------+------------+------------+-------+---------------+------------+---------+------+---------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

(Sat Jul 23 23:13:29 2022)[root@GreatSQL][test]>show warnings;
+-------+------+-----------------------------------------------------------------------------------------------+
| Level | Code | Message                                                                                       |
+-------+------+-----------------------------------------------------------------------------------------------+
| Note  | 1003 | /* select#1 */ select count(`test`.`test_count`.`id`) AS `count(id)` from `test`.`test_count` |
+-------+------+-----------------------------------------------------------------------------------------------+
1 row in set (0.00 sec)

需要注意的是COUNT里如果是非主键字段的话

(Tue Jul 26 14:01:57 2022)[root@GreatSQL][test]>explain select count(name) from test_count where id <100 ;
+----+-------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
| id | select_type | table      | partitions | type  | possible_keys | key     | key_len | ref  | rows | filtered | Extra       |
+----+-------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
|  1 | SIMPLE      | test_count | NULL       | range | PRIMARY       | PRIMARY | 4       | NULL |   99 |   100.00 | Using where |
+----+-------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

实验结果

  • 1.从上面的实验我们可以得出,COUNT(*)COUNT(1)是最快的,其次是COUNT(id)
  • 2.count(*)被MySQL查询优化器改写成了count(0),并选择了idx_salary索引。
  • 3.count(1)count(id)都选择了idx_salary索引。

实验结论

总结:COUNT(*)=COUNT(1)>COUNT(id)

MySQL的官方文档也有说过:

InnoDB handles SELECT COUNT(*) and SELECT COUNT(1) operations in the same way. There is no performance difference

翻译: InnoDB以相同的方式处理SELECT COUNT(*)和SELECT COUNT(1)操作。没有性能差异

所以说明了对于COUNT(1)或者是COUNT(*),MySQL的优化其实是完全一样的,没有存在没有性能的差异。

但是建议使用COUNT(*),因为这是MySQL92定义的标准统计行数的语法。

2.COUNT(*)与TABLES_ROWS

在InnoDB中,MySQL数据库每个表占用的空间、表记录的行数可以打开MySQL的information_schema数据库。在该库中有一个TABLES表,这个表主要字段分别是:

  • TABLE_SCHEMA : 数据库名
  • TABLE_NAME:表名
  • ENGINE:所使用的存储引擎
  • TABLES_ROWS:记录数
  • DATA_LENGTH:数据大小
  • INDEX_LENGTH:索引大小

TABLE_ROWS用于显示这个表当前有多少行,这个命令执行挺快的,那这个TABLE_ROWS能代替count(*)吗?

我们用TABLES_ROWS查询一下表记录条数:

(Sat Jul 23 23:15:14 2022)[root@GreatSQL][test]>SELECT TABLE_ROWS
    -> FROM INFORMATION_SCHEMA.TABLES
    -> WHERE TABLE_NAME = 'test_count';
+------------+
| TABLE_ROWS |
+------------+
|    9980612 |
+------------+
1 row in set (0.03 sec)

可以看到,记录的条数并不准确,因为InnoDB引擎下TABLES_ROWS行计数仅是大概估计值。

3.COUNT(*)是怎么样执行的?

首先要明确的是,MySQL有多种不同引擎,在不同的引擎中,count(*)有不同的实现方式,本文主要介绍的是在InnoDB引擎上的执行流程

在InnoDB存储引擎中,count(*)函数是先从内存中读取表中的数据到内存缓冲区,然后扫描全表获得行记录数的。简单来说就是全表扫描,一个循环解决问题,循环内: 先读取一行,再决定该行是否计入count循环内是一行一行进行计数处理的。

在MyISAM引擎中是把一个表的总行数存在了磁盘上,因此执行count(*)的时候会直接返回这个数,效率很高。

之所以InnoDB 不跟 MyISAM一样把数字存起来,是因为即使是在同一个时刻的多个查询,由于多版本并发控制(MVCC)的原因,InnoDB表应该返回多少行也是不确定的。而且不论是在事务支持、并发能力还是在数据安全方面,InnoDB都优于MyISAM。

虽然如此,InnoDB对于count(*)操作还是做了优化的。InnoDB是索引组织表,主键索引树的叶子节点是数据,而普通索引树的叶子节点是主键值。所以,普通索引树比主键索引树小很多。对于count(*)这样的操作,遍历哪个索引树得到的结果逻辑上都是一样的。因此,MySQL 优化器会找到最小的那棵树来遍历。

需要注意的是我们在这篇文章里讨论的是没有过滤条件的count(*),如果加了WHERE条件的话,MyISAM引擎的表也是不能返回得这么快的。

4.总结

  • 1.COUNT(*)=COUNT(1)>COUNT(id)
  • 2.COUNT函数的用法,主要用于统计表行数。主要用法有COUNT(*)、COUNT(字段)和COUNT(1)
  • 3.因为COUNT(*)是SQL92定义的标准统计行数的语法,所以MySQL对他进行了很多优化,MyISAM中会直接把表的总行数单独记录下来供COUNT(*)查询,而InnoDB则会在扫表的时候选择最小的索引来降低成本。这些优化的前提是没有进行WHERE和GROUP的条件查询。
  • 4.在InnoDB中COUNT(*)COUNT(1)实现上没有区别,而且效率一样,但是COUNT(字段)需要进行字段的非NULL判断,所以效率会低一些。
  • 5.因为COUNT(*)是SQL92定义的标准统计行数的语法,并且效率高,所以还是建议使用COUNT(*)查询表的行数。
  • 6.正如前面COUNT(name)的用例那样,在建表过程中需要根据业务需求建立性能较高的索引,同时也要注意避免建立不必要的索引。

到此这篇关于MySQL COUNT(*)性能原理详解的文章就介绍到这了,更多相关MySQL COUNT 内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • MySQL中count(*)执行慢的解决方案

    目录 一. count(*) 的实现方式 1.实现方式比较 2.为什么InnoDB不像MyISAM一样,也把数字存起来 3.小结 二.计数方法 1.用缓存系统保存计数 2.在数据库保存计数 三.不同的 count 用法 1. count(主键 id) 2.count(1) 3.count(字段) 4.count(*) 前言: 在开发工作中,经常需要计算一个表的行数,比如一个内容系统审核记录总数.这时候我们最先想到是一条 select count(*) from my_table;语句.但是,随着

  • 聊聊MySQL的COUNT(*)的性能

    前言 基本职场上的程序员用来统计数据库表的行数都会使用count(*),count(1)或者count(主键),那么它们之间的区别和性能你又是否了解呢? 其实程序员在开发的过程中,在一张大表上统计总行数是非常耗时的一个操作,那么我们应该用哪个方法统计会更快呢? 接下来我们就来聊一聊MySQL中统计总行数的方法和性能. count(*),count(1),count(主键)哪个更快? 1.建表并且插入1000万条数据进行实验测试: # 创建测试表 CREATE TABLE `t6` ( `id`

  • MySQL中distinct和count(*)的使用方法比较

    首先对于MySQL的DISTINCT的关键字的一些用法: 1.在count 不重复的记录的时候能用到,比如SELECT COUNT( DISTINCT id ) FROM tablename:就是计算talbebname表中id不同的记录有多少条. 2,在需要返回记录不同的id的具体值的时候可以用,比如SELECT DISTINCT id FROM tablename:返回talbebname表中不同的id的具体的值. 3.上面的情况2对于需要返回mysql表中2列以上的结果时会有歧义,比如SE

  • Mysql中count(*)、count(1)、count(主键id)与count(字段)的区别

    目录 count()函数 count(*).count(1) .count(主键id) 和 count(字段) 区别 count(主键id) 与 count(1) count(字段) count(非空字段) count(可空字段) count(*) 执行效率 执行效果上: 执行效率上: 实例分析 count()函数 count() 是一个聚合函数,对于返回的结果集,一行行地判断,如果 count 函数的参数不是 NULL,累计值就加 1,否则不加.最后返回累计值. count(*).count(

  • 一文搞清楚MySQL count(*)、count(1)、count(col)区别

    目录 count作用 测试 count(*) count(1) count(col) count(id):统计id count(indexcol):统计带索引的字段 count(normalcol):统计不带索引的字段 count(1)和count(*)取舍 总结 在工作中遇到count(*).count(1).count(col) ,可能会让你分不清楚,都是计数,干嘛这么搞这么多东西. count 作用 COUNT(expression):返回查询的记录总数,expression 参数是一个字

  • MySQL count(1)、count(*)、count(字段)的区别

    目录 1.初识COUNT 2.COUNT(字段).COUNT(常量)和COUNT(*)之间的区别 3.COUNT(*)的优化 MyISAM InnoDB 4.COUNT(*)和COUNT(1) 5.COUNT(字段) 6.总结 关于数据库中行数统计,无论是MySQL还是Oracle,都有一个函数可以使用,那就是COUNT. 但是,就是这个常用的COUNT函数,却暗藏着很多玄机,尤其是在面试的时候,一不小心就会被虐.不信的话请尝试回答下以下问题: > 1.COUNT有几种用法? > 2.COUN

  • 关于mysql innodb count(*)速度慢的解决办法

    innodb引擎在统计方面和myisam是不同的,Myisam内置了一个计数器,所以在使用 select count(*) from table 的时候,直接可以从计数器中取出数据.而innodb必须全表扫描一次方能得到总的数量.要初步解决这个问题,需要做不同于myisam的一些工作: 1.使用第二索引(一般不使用主键索引),并且添加where条件,如: 复制代码 代码如下: select count(*) from product where comp_id>=0 ; show index f

  • MySQL中count(*)、count(1)和count(col)的区别汇总

    前言 count函数是用来统计表中或数组中记录的一个函数,count(*) 它返回检索行的数目, 不论其是否包含 NULL值.最近感觉大家都在讨论count的区别,那么我也写下吧:欢迎留言讨论,话不多说了,来一起看看详细的介绍吧. 1.表结构: dba_jingjing@3306>[rds_test]>CREATE TABLE `test_count` ( -> `c1` varchar(10) DEFAULT NULL, -> `c2` varchar(10) DEFAULT N

  • MySQL 中的count(*) 与 count(1) 谁更快一些?

    目录 1.实践 2.explain分析 3.原理分析 3.1主键索引与普通索引 3.2原理分析 4.MyISAM呢? 先说结论:这两个性能差别不大. 1.实践 我准备了一张有 100W 条数据的表,表结构如下: CREATE TABLE `user` (   `id` int(11) unsigned NOT NULL AUTO_INCREMENT,   `username` varchar(255) DEFAULT NULL,   `address` varchar(255) DEFAULT

  • MYSQL中统计查询结果总行数的便捷方法省去count(*)

    MYSQL的关键词 : SQL_CALC_FOUND_ROWS 查看手册后发现此关键词的作用是在查询时统计满足过滤条件后的结果的总数(不受 Limit 的限制) 例如: 复制代码 代码如下: SELECT SQL_CALC_FOUND_ROWS tid FROM cdb_threads WHERE fid=14 LIMIT 1,10; 假设满足条件的有1000条,这里返回10条. 立即使用 复制代码 代码如下: SELECT found_rows() AS rowcount; 则返回的 rowc

随机推荐