Python中ArcPy栅格裁剪栅格(批量对齐栅格图像范围并统一行数与列数)

  本文介绍基于PythonArcPy模块,实现基于栅格图像批量裁剪栅格图像,同时对齐各个栅格图像的空间范围统一其各自行数列数的方法。

  首先明确一下我们的需求。现有某一地区的多张栅格遥感影像,其虽然都大致对应着同样的地物范围,但不同栅格影像之间的空间范围行数列数、像元的位置等都不完全一致;例如,某一景栅格影像会比其他栅格影像多出一行,而另一景栅格影像可能又会比其他栅格影像少一列等等。我们希望可以以其中某一景栅格影像为标准,将全部的栅格影像的具体范围、行数、列数等加以统一。

  本文所用到的具体代码如下。

# -*- coding: utf-8 -*-
"""
Created on Thu Dec 29 21:13:19 2022

@author: fkxxgis
"""

import arcpy

tif_file_path = r"E:\02_Project\01_Chlorophyll\ClimateZone\Original"
result_file_path = r"E:\02_Project\01_Chlorophyll\ClimateZone\Original_Snap/"
snap_file_name = r"E:\02_Project\01_Chlorophyll\ClimateZone\Original\F_LC.tif"

arcpy.env.workspace = tif_file_path
arcpy.env.snapRaster = snap_file_name

tif_file_list = arcpy.ListRasters("*", "tif")

for tif_file in tif_file_list:
    key_name = tif_file.split(".tif")[0] + "S.tif"
    arcpy.Clip_management(tif_file,
                          "#",
                          result_file_path + key_name,
                          snap_file_name,
                          "#",
                          "#",
                          "MAINTAIN_EXTENT")

  其中,tif_file_path是保存有我们原有栅格图像的路径,result_file_path是裁剪后各个结果图像的保存路径(记得在这一路径后加一个正斜杠/,否则之后输出结果的路径会有问题),snap_file_name是裁剪其他栅格图像时,所用的模板栅格图像——因为我们要统一各个栅格图像的行号与列号,所以很显然,这里这个模板图像就需要找各个栅格图像中,行数与列数均为最少的那一景图像。这里需要注意,如果大家的各个栅格图像中,行数与列数最少的栅格不是同一个栅格,那么可以分别用行数最少、列数最少的这两个栅格分别作为模板,执行两次上述代码。

  代码整体思路也很简单:首先,我们基于arcpy.ListRasters()函数,获取tif_file_path路径下原有的全部.tif格式的图像文件,并以列表的形式存放于tif_file_list中;随后,逐一取出tif_file_list列表中的栅格文件,进行裁剪处理。这里的裁剪我们是通过arcpy.Clip_management()函数来实现的,其各项参数的具体含义大家可以参考官方帮助文档,我们这里就只对本文中需要修改的参数加以介绍。

  其中,第一个参数就是当前循环所用的栅格图像文件,第三个参数是结果文件的保存路径与文件名,第四个参数则是模板文件;最后一个参数"MAINTAIN_EXTENT"是为了保证得到的裁剪后结果图像严格与模板图像的行数、列数相匹配。除此之外,几个"#"表示我们对其他参数暂时不配置。

  此外,在代码开头的这句arcpy.env.snapRaster = snap_file_name,表明我们将以所选用的模板文件为标准,使得输出的结果文件的像元大小、图像范围等与模板文件保持一致。这里需要注意,这一句代码与前述的"MAINTAIN_EXTENT"参数缺一不可——只有二者同时出现,才可以保证输出结果与模板文件是严格一致的。

  另一方面,由于我们用到了ArcPy模块,因此如果大家的Python版本是3.0及以上,则需要在ArcMap软件中的Python运行框,或其对应的IDLE(如下图所示)中运行上述代码。

  运行结果后,可以发现所有输出结果文件就具有完全一致的行数与列数了,且其各自的像元位置也是完全一致的。

到此这篇关于Python中ArcPy栅格裁剪栅格(批量对齐栅格图像范围并统一行数与列数)的文章就介绍到这了,更多相关Python arcpy栅格内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python利用arcpy模块实现栅格的创建与拼接

    本文介绍基于Python语言arcpy模块,实现栅格影像图层建立与多幅遥感影像数据批量拼接(Mosaic)的操作. 首先,相关操作所需具体代码如下: import os import arcpy file_path="G:/Postgraduate/LAI_Glass_RTlab/A2018161_Dif/DRT/" out_file_path="G:/Postgraduate/LAI_Glass_RTlab/A2018161_Dif/DRT/" out_file_

  • Python中ArcPy栅格裁剪栅格(批量对齐栅格图像范围并统一行数与列数)

      本文介绍基于Python中ArcPy模块,实现基于栅格图像批量裁剪栅格图像,同时对齐各个栅格图像的空间范围,统一其各自行数与列数的方法.   首先明确一下我们的需求.现有某一地区的多张栅格遥感影像,其虽然都大致对应着同样的地物范围,但不同栅格影像之间的空间范围.行数与列数.像元的位置等都不完全一致:例如,某一景栅格影像会比其他栅格影像多出一行,而另一景栅格影像可能又会比其他栅格影像少一列等等.我们希望可以以其中某一景栅格影像为标准,将全部的栅格影像的具体范围.行数.列数等加以统一.   本文

  • python DataFrame获取行数、列数、索引及第几行第几列的值方法

    1.df=DataFrame([{'A':'11','B':'12'},{'A':'111','B':'121'},{'A':'1111','B':'1211'}]) print df.columns.size#列数 2 print df.iloc[:,0].size#行数 3 print df.ix[[0]].index.values[0]#索引值 0 print df.ix[[0]].values[0][0]#第一行第一列的值 11 print df.ix[[1]].values[0][1]

  • python统计多维数组的行数和列数实例

    python菜鸟,每天都要进步一点点. 二维元组的例子: A = ((1, 1, 1), (1, 1, 1),(1, 1, 1),(0, 0, 0)) print len(A) # 4, print len(A[0]) # 3 同样的如果是多维,每一维长度应该是 len(A[i]) 以上这篇python统计多维数组的行数和列数实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • python中pandas输出完整、对齐的表格的方法

    今天使用python计算数据相关性,但是发现计算出的表格中间好多省略号,而且也不对齐. 这也太难看了. 于是在程序里加了三行: pd.set_option('display.max_columns', 1000) pd.set_option('display.width', 1000) pd.set_option('display.max_colwidth', 1000) 输出结果如下,输出结果已经全部显示了: 但是依然不对齐. 于是又加了两行: pd.set_option('display.u

  • python中csv文件的若干读写方法小结

    如下所示: //用普通文本文件方式打开和操作 with open("'file.csv'") as cf: lines=cf.readlines() ...... //用普通文本方式打开,用csv模块操作 import csv with open("file.csv") as cf: lines=csv.reader(cf) for line in lines: print(line) ...... import csv headers=['id','usernam

  • python中使用xlrd、xlwt操作excel表格详解

    最近遇到一个情景,就是定期生成并发送服务器使用情况报表,按照不同维度统计,涉及python对excel的操作,上网搜罗了一番,大多大同小异,而且不太能满足需求,不过经过一番对源码的"研究"(用此一词让我觉得颇有成就感)之后,基本解决了日常所需.主要记录使用过程的常见问题及解决. python操作excel主要用到xlrd和xlwt这两个库,即xlrd是读excel,xlwt是写excel的库.可从这里下载https://pypi.python.org/pypi.下面分别记录python

  • 浅谈Python中的zip()与*zip()函数详解

    前言 1.实验环境: Python 3.6: 2.示例代码地址:下载示例: 3.本文中元素是指列表.元组.字典等集合类数据类型中的下一级项目(可能是单个元素或嵌套列表). zip(*iterables)函数详解 zip()函数的定义 从参数中的多个迭代器取元素组合成一个新的迭代器: 返回: 返回一个zip对象,其内部元素为元组:可以转化为列表或元组: 传入参数:元组.列表.字典等迭代器. zip()函数的用法 当zip()函数中只有一个参数时 zip(iterable)从iterable中依次取

  • python中返回矩阵的行列方法

    实例如下所示: # TODO 返回矩阵的行数和列数 def shape(M): return len(M),len(M[0]) 以上这篇python中返回矩阵的行列方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们. 您可能感兴趣的文章: Python numpy 提取矩阵的某一行或某一列的实例 Python矩阵常见运算操作实例总结 Python表示矩阵的方法分析 Python获取二维矩阵每列最大值的方法 Python实现矩阵转置的方法分析 matlab中实现矩阵删

  • Python 中pandas索引切片读取数据缺失数据处理问题

    引入 numpy已经能够帮助我们处理数据,能够结合matplotlib解决我们数据分析的问题,那么pandas学习的目的在什么地方呢? numpy能够帮我们处理处理数值型数据,但是这还不够 很多时候,我们的数据除了数值之外,还有字符串,还有时间序列等 比如:我们通过爬虫获取到了存储在数据库中的数据 比如:之前youtube的例子中除了数值之外还有国家的信息,视频的分类(tag)信息,标题信息等 所以,numpy能够帮助我们处理数值,但是pandas除了处理数值之外(基于numpy),还能够帮助我

  • matlab、python中矩阵的互相导入导出方式

    还有一种最流行的h5py.. 过几天更新 ------------在python中导出矩阵至matlab------------ 如果矩阵是mxn维的. 那么可以用 : np.savetxt('dev_ivector.csv', dev_ivector, delimiter = ',') 对应matlab读取为: dev_ivec = csvread('dev_ivector.csv') ###csv格式其实就内定了结构体 如果矩阵是(n,)这种格式.['aagj' 'aagy' 'aann'

随机推荐