Java concurrency之AtomicLongFieldUpdater原子类_动力节点Java学院整理

AtomicLongFieldUpdater介绍和函数列表

AtomicLongFieldUpdater可以对指定"类的 'volatile long'类型的成员"进行原子更新。它是基于反射原理实现的。

AtomicLongFieldUpdater函数列表

// 受保护的无操作构造方法,供子类使用。
protected AtomicLongFieldUpdater()
// 以原子方式将给定值添加到此更新器管理的给定对象的字段的当前值。
long addAndGet(T obj, long delta)
// 如果当前值 == 预期值,则以原子方式将此更新器所管理的给定对象的字段设置为给定的更新值。
abstract boolean compareAndSet(T obj, long expect, long update)
// 以原子方式将此更新器管理的给定对象字段当前值减 1。
long decrementAndGet(T obj)
// 获取此更新器管理的在给定对象的字段中保持的当前值。
abstract long get(T obj)
// 以原子方式将给定值添加到此更新器管理的给定对象的字段的当前值。
long getAndAdd(T obj, long delta)
// 以原子方式将此更新器管理的给定对象字段当前值减 1。
long getAndDecrement(T obj)
// 以原子方式将此更新器管理的给定对象字段的当前值加 1。
long getAndIncrement(T obj)
// 将此更新器管理的给定对象的字段以原子方式设置为给定值,并返回旧值。
long getAndSet(T obj, long newValue)
// 以原子方式将此更新器管理的给定对象字段当前值加 1。
long incrementAndGet(T obj)
// 最后将此更新器管理的给定对象的字段设置为给定更新值。
abstract void lazySet(T obj, long newValue)
// 为对象创建并返回一个具有给定字段的更新器。
static <U> AtomicLongFieldUpdater<U> newUpdater(Class<U> tclass, String fieldName)
// 将此更新器管理的给定对象的字段设置为给定更新值。
abstract void set(T obj, long newValue)
// 如果当前值 == 预期值,则以原子方式将此更新器所管理的给定对象的字段设置为给定的更新值。
abstract boolean weakCompareAndSet(T obj, long expect, long update)

AtomicLongFieldUpdater示例

// LongTest.java的源码
import java.util.concurrent.atomic.AtomicLongFieldUpdater;
public class LongFieldTest {
  public static void main(String[] args) {
    // 获取Person的class对象
    Class cls = Person.class;
    // 新建AtomicLongFieldUpdater对象,传递参数是“class对象”和“long类型在类中对应的名称”
    AtomicLongFieldUpdater mAtoLong = AtomicLongFieldUpdater.newUpdater(cls, "id");
    Person person = new Person(12345678L);
    // 比较person的"id"属性,如果id的值为12345678L,则设置为1000。
    mAtoLong.compareAndSet(person, 12345678L, 1000);
    System.out.println("id="+person.getId());
  }
}
class Person {
  volatile long id;
  public Person(long id) {
    this.id = id;
  }
  public void setId(long id) {
    this.id = id;
  }
  public long getId() {
    return id;
  }
}

运行结果:

id=1000

AtomicLongFieldUpdater源码分析(基于JDK1.7.0_40)

AtomicLongFieldUpdater完整源码

 /*
  * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
  *
  *
  *
  *
  *
  *
  *
  *
  *
  *
  *
  *
  *
  *
  *
  *
  *
  *
  *
  *
  */
 /*
  *
  *
  *
  *
  *
  * Written by Doug Lea with assistance from members of JCP JSR-
  * Expert Group and released to the public domain, as explained at
  * http://creativecommons.org/publicdomain/zero/./
  */
 package java.util.concurrent.atomic;
 import java.lang.reflect.*;
 import sun.misc.Unsafe;
 import sun.reflect.CallerSensitive;
 import sun.reflect.Reflection;
 /**
  * A reflection-based utility that enables atomic updates to
  * designated {@code volatile} reference fields of designated
  * classes. This class is designed for use in atomic data structures
  * in which several reference fields of the same node are
  * independently subject to atomic updates. For example, a tree node
  * might be declared as
  *
  * <pre> {@code
  * class Node {
  *  private volatile Node left, right;
  *
  *  private static final AtomicReferenceFieldUpdater<Node, Node> leftUpdater =
  *   AtomicReferenceFieldUpdater.newUpdater(Node.class, Node.class, "left");
  *  private static AtomicReferenceFieldUpdater<Node, Node> rightUpdater =
  *   AtomicReferenceFieldUpdater.newUpdater(Node.class, Node.class, "right");
  *
  *  Node getLeft() { return left; }
  *  boolean compareAndSetLeft(Node expect, Node update) {
  *   return leftUpdater.compareAndSet(this, expect, update);
  *  }
  *  // ... and so on
  * }}</pre>
  *
  * <p>Note that the guarantees of the {@code compareAndSet}
  * method in this class are weaker than in other atomic classes.
  * Because this class cannot ensure that all uses of the field
  * are appropriate for purposes of atomic access, it can
  * guarantee atomicity only with respect to other invocations of
  * {@code compareAndSet} and {@code set} on the same updater.
  *
  * @since .
  * @author Doug Lea
  * @param <T> The type of the object holding the updatable field
  * @param <V> The type of the field
  */
 public abstract class AtomicReferenceFieldUpdater<T, V> {
   /**
    * Creates and returns an updater for objects with the given field.
    * The Class arguments are needed to check that reflective types and
    * generic types match.
    *
    * @param tclass the class of the objects holding the field.
    * @param vclass the class of the field
    * @param fieldName the name of the field to be updated.
    * @return the updater
    * @throws IllegalArgumentException if the field is not a volatile reference type.
    * @throws RuntimeException with a nested reflection-based
    * exception if the class does not hold field or is the wrong type.
    */
   @CallerSensitive
   public static <U, W> AtomicReferenceFieldUpdater<U,W> newUpdater(Class<U> tclass, Class<W> vclass, String fieldName) {
     return new AtomicReferenceFieldUpdaterImpl<U,W>(tclass,
                             vclass,
                             fieldName,
                             Reflection.getCallerClass());
   }
   /**
   * Protected do-nothing constructor for use by subclasses.
   */
   protected AtomicReferenceFieldUpdater() {
   }
   /**
   * Atomically sets the field of the given object managed by this updater
   * to the given updated value if the current value {@code ==} the
   * expected value. This method is guaranteed to be atomic with respect to
   * other calls to {@code compareAndSet} and {@code set}, but not
   * necessarily with respect to other changes in the field.
   *
   * @param obj An object whose field to conditionally set
   * @param expect the expected value
   * @param update the new value
   * @return true if successful.
   */
   public abstract boolean compareAndSet(T obj, V expect, V update);
   /**
   * Atomically sets the field of the given object managed by this updater
   * to the given updated value if the current value {@code ==} the
   * expected value. This method is guaranteed to be atomic with respect to
   * other calls to {@code compareAndSet} and {@code set}, but not
   * necessarily with respect to other changes in the field.
   *
   * <p>May <a href="package-summary.html#Spurious" rel="external nofollow" >fail spuriously</a>
   * and does not provide ordering guarantees, so is only rarely an
   * appropriate alternative to {@code compareAndSet}.
   *
   * @param obj An object whose field to conditionally set
   * @param expect the expected value
   * @param update the new value
   * @return true if successful.
   */
   public abstract boolean weakCompareAndSet(T obj, V expect, V update);
   /**
   * Sets the field of the given object managed by this updater to the
   * given updated value. This operation is guaranteed to act as a volatile
   * store with respect to subsequent invocations of {@code compareAndSet}.
   *
   * @param obj An object whose field to set
   * @param newValue the new value
   */
   public abstract void set(T obj, V newValue);
   /**
   * Eventually sets the field of the given object managed by this
   * updater to the given updated value.
   *
   * @param obj An object whose field to set
   * @param newValue the new value
   * @since 1.6
   */
   public abstract void lazySet(T obj, V newValue);
   /**
   * Gets the current value held in the field of the given object managed
   * by this updater.
   *
   * @param obj An object whose field to get
   * @return the current value
   */
   public abstract V get(T obj);
   /**
   * Atomically sets the field of the given object managed by this updater
   * to the given value and returns the old value.
   *
   * @param obj An object whose field to get and set
   * @param newValue the new value
   * @return the previous value
   */
   public V getAndSet(T obj, V newValue) {
     for (;;) {
       V current = get(obj);
       if (compareAndSet(obj, current, newValue))
         return current;
     }
   }
   private static final class AtomicReferenceFieldUpdaterImpl<T,V>
     extends AtomicReferenceFieldUpdater<T,V> {
     private static final Unsafe unsafe = Unsafe.getUnsafe();
     private final long offset;
     private final Class<T> tclass;
     private final Class<V> vclass;
     private final Class cclass;
     /*
     * Internal type checks within all update methods contain
     * internal inlined optimizations checking for the common
     * cases where the class is final (in which case a simple
     * getClass comparison suffices) or is of type Object (in
     * which case no check is needed because all objects are
     * instances of Object). The Object case is handled simply by
     * setting vclass to null in constructor. The targetCheck and
     * updateCheck methods are invoked when these faster
     * screenings fail.
     */
     AtomicReferenceFieldUpdaterImpl(Class<T> tclass,
                     Class<V> vclass,
                     String fieldName,
                     Class<?> caller) {
       Field field = null;
       Class fieldClass = null;
       int modifiers = 0;
       try {
         field = tclass.getDeclaredField(fieldName);
         modifiers = field.getModifiers();
         sun.reflect.misc.ReflectUtil.ensureMemberAccess(
           caller, tclass, null, modifiers);
         sun.reflect.misc.ReflectUtil.checkPackageAccess(tclass);
         fieldClass = field.getType();
       } catch (Exception ex) {
         throw new RuntimeException(ex);
       }
       if (vclass != fieldClass)
         throw new ClassCastException();
       if (!Modifier.isVolatile(modifiers))
         throw new IllegalArgumentException("Must be volatile type");
       this.cclass = (Modifier.isProtected(modifiers) &&
              caller != tclass) ? caller : null;
       this.tclass = tclass;
       if (vclass == Object.class)
         this.vclass = null;
       else
         this.vclass = vclass;
       offset = unsafe.objectFieldOffset(field);
     }
     void targetCheck(T obj) {
       if (!tclass.isInstance(obj))
         throw new ClassCastException();
       if (cclass != null)
         ensureProtectedAccess(obj);
     }
     void updateCheck(T obj, V update) {
       if (!tclass.isInstance(obj) ||
         (update != null && vclass != null && !vclass.isInstance(update)))
         throw new ClassCastException();
       if (cclass != null)
         ensureProtectedAccess(obj);
     }
     public boolean compareAndSet(T obj, V expect, V update) {
       if (obj == null || obj.getClass() != tclass || cclass != null ||
         (update != null && vclass != null &&
         vclass != update.getClass()))
         updateCheck(obj, update);
       return unsafe.compareAndSwapObject(obj, offset, expect, update);
     }
     public boolean weakCompareAndSet(T obj, V expect, V update) {
       // same implementation as strong form for now
       if (obj == null || obj.getClass() != tclass || cclass != null ||
         (update != null && vclass != null &&
         vclass != update.getClass()))
         updateCheck(obj, update);
       return unsafe.compareAndSwapObject(obj, offset, expect, update);
     }
     public void set(T obj, V newValue) {
       if (obj == null || obj.getClass() != tclass || cclass != null ||
         (newValue != null && vclass != null &&
         vclass != newValue.getClass()))
         updateCheck(obj, newValue);
       unsafe.putObjectVolatile(obj, offset, newValue);
     }
     public void lazySet(T obj, V newValue) {
       if (obj == null || obj.getClass() != tclass || cclass != null ||
         (newValue != null && vclass != null &&
         vclass != newValue.getClass()))
         updateCheck(obj, newValue);
       unsafe.putOrderedObject(obj, offset, newValue);
     }
     public V get(T obj) {
       if (obj == null || obj.getClass() != tclass || cclass != null)
         targetCheck(obj);
       return (V)unsafe.getObjectVolatile(obj, offset);
     }
     private void ensureProtectedAccess(T obj) {
       if (cclass.isInstance(obj)) {
         return;
       }
       throw new RuntimeException(
         new IllegalAccessException("Class " +
           cclass.getName() +
           " can not access a protected member of class " +
           tclass.getName() +
           " using an instance of " +
           obj.getClass().getName()
         )
       );
     }
   }
 }

   下面分析LongFieldTest.java的流程。

1. newUpdater()

newUpdater()的源码如下:

public static <U> AtomicLongFieldUpdater<U> newUpdater(Class<U> tclass, String fieldName) {
  Class<?> caller = Reflection.getCallerClass();
  if (AtomicLong.VM_SUPPORTS_LONG_CAS)
    return new CASUpdater<U>(tclass, fieldName, caller);
  else
    return new LockedUpdater<U>(tclass, fieldName, caller);
}

说明:newUpdater()的作用是获取一个AtomicIntegerFieldUpdater类型的对象。

它实际上返回的是CASUpdater对象,或者LockedUpdater对象;具体返回哪一个类取决于JVM是否支持long类型的CAS函数。CASUpdater和LockedUpdater都是AtomicIntegerFieldUpdater的子类,它们的实现类似。下面以CASUpdater来进行说明。

CASUpdater类的源码如下:

public boolean compareAndSet(T obj, long expect, long update) {
  if (obj == null || obj.getClass() != tclass || cclass != null) fullCheck(obj);
  return unsafe.compareAndSwapLong(obj, offset, expect, update);
}

说明:它实际上是通过CAS函数操作。如果类的long对象的值是expect,则设置它的值为update。

(0)

相关推荐

  • Java concurrency之LockSupport_动力节点Java学院整理

    LockSupport介绍 LockSupport是用来创建锁和其他同步类的基本线程阻塞原语. LockSupport中的park() 和 unpark() 的作用分别是阻塞线程和解除阻塞线程,而且park()和unpark()不会遇到"Thread.suspend 和 Thread.resume所可能引发的死锁"问题. 因为park() 和 unpark()有许可的存在:调用 park() 的线程和另一个试图将其 unpark() 的线程之间的竞争将保持活性. LockSupport

  • Java concurrency之公平锁(二)_动力节点Java学院整理

    释放公平锁(基于JDK1.7.0_40) 1. unlock() unlock()在ReentrantLock.java中实现的,源码如下: public void unlock() { sync.release(1); } 说明: unlock()是解锁函数,它是通过AQS的release()函数来实现的. 在这里,"1"的含义和"获取锁的函数acquire(1)的含义"一样,它是设置"释放锁的状态"的参数.由于"公平锁"是

  • Java concurrency集合之ConcurrentSkipListMap_动力节点Java学院整理

    ConcurrentSkipListMap介绍 ConcurrentSkipListMap是线程安全的有序的哈希表,适用于高并发的场景. ConcurrentSkipListMap和TreeMap,它们虽然都是有序的哈希表.但是,第一,它们的线程安全机制不同,TreeMap是非线程安全的,而ConcurrentSkipListMap是线程安全的.第二,ConcurrentSkipListMap是通过跳表实现的,而TreeMap是通过红黑树实现的. 关于跳表(Skip List),它是平衡树的一种

  • 支持生产阻塞的Java线程池

    通常来说,生产任务的速度要大于消费的速度.一个细节问题是,队列长度,以及如何匹配生产和消费的速度. 一个典型的生产者-消费者模型如下:   在并发环境下利用J.U.C提供的Queue实现可以很方便地保证生产和消费过程中的线程安全.这里需要注意的是,Queue必须设置初始容量,防止生产者生产过快导致队列长度暴涨,最终触发OutOfMemory. 对于一般的生产快于消费的情况.当队列已满时,我们并不希望有任何任务被忽略或得不到执行,此时生产者可以等待片刻再提交任务,更好的做法是,把生产者阻塞在提交任

  • 深入java线程池的使用详解

    在Java 5.0之前启动一个任务是通过调用Thread类的start()方法来实现的,任务的提于交和执行是同时进行的,如果你想对任务的执行进行调度或是控制 同时执行的线程数量就需要额外编写代码来完成.5.0里提供了一个新的任务执行架构使你可以轻松地调度和控制任务的执行,并且可以建立一个类似数据库连接 池的线程池来执行任务.这个架构主要有三个接口和其相应的具体类组成.这三个接口是Executor, ExecutorService.ScheduledExecutorService,让我们先用一个图

  • Java concurrency线程池之线程池原理(二)_动力节点Java学院整理

    线程池示例 在分析线程池之前,先看一个简单的线程池示例. import java.util.concurrent.Executors; import java.util.concurrent.ExecutorService; public class ThreadPoolDemo1 { public static void main(String[] args) { // 创建一个可重用固定线程数的线程池 ExecutorService pool = Executors.newFixedThre

  • Java 线程池详解及实例代码

    线程池的技术背景 在面向对象编程中,创建和销毁对象是很费时间的,因为创建一个对象要获取内存资源或者其它更多资源.在Java中更是如此,虚拟机将试图跟踪每一个对象,以便能够在对象销毁后进行垃圾回收. 所以提高服务程序效率的一个手段就是尽可能减少创建和销毁对象的次数,特别是一些很耗资源的对象创建和销毁.如何利用已有对象来服务就是一个需要解决的关键问题,其实这就是一些"池化资源"技术产生的原因. 例如Android中常见到的很多通用组件一般都离不开"池"的概念,如各种图片

  • 四种Java线程池用法解析

    本文为大家分析四种Java线程池用法,供大家参考,具体内容如下 1.new Thread的弊端 执行一个异步任务你还只是如下new Thread吗? new Thread(new Runnable() { @Override public void run() { // TODO Auto-generated method stub } } ).start(); 那你就out太多了,new Thread的弊端如下: a. 每次new Thread新建对象性能差. b. 线程缺乏统一管理,可能无限

  • java中通用的线程池实例代码

    复制代码 代码如下: package com.smart.frame.task.autoTask; import java.util.Collection;import java.util.Vector; /** * 任务分发器 */public class TaskManage extends Thread{    protected Vector<Runnable> tasks = new Vector<Runnable>();    protected boolean run

  • Java concurrency之AtomicLong原子类_动力节点Java学院整理

    AtomicLong介绍和函数列表 AtomicLong是作用是对长整形进行原子操作. 在32位操作系统中,64位的long 和 double 变量由于会被JVM当作两个分离的32位来进行操作,所以不具有原子性.而使用AtomicLong能让long的操作保持原子型. AtomicLong函数列表 // 构造函数 AtomicLong() // 创建值为initialValue的AtomicLong对象 AtomicLong(long initialValue) // 以原子方式设置当前值为ne

随机推荐