R语言实现KMeans聚类算法实例教程

目录
  • 什么是k-means聚类算法
  • R 实现kmeans聚类算法
    • 加载包
    • 加载示例数据
    • 寻找最佳聚类数量
    • 使用最优k执行kmeans聚类
  • kmeans 算法的优缺点
  • 总结

本文和你一起学习无监督机器学习算法 ———— kmeans算法,并在R中给详细的实现示例和步骤。

什么是k-means聚类算法

聚类是从数据集中对观测值进行聚类的机器学习方法。它的目标是聚类相似观测值,不同类别之间差异较大。聚类是一种无监督学习方法,因为它仅尝试从数据集中发现结构,而不是预测应变量的值。

下面是一个市场营销中对客户分类的场景,通过下面客户信息:

  • 家庭收入
  • 住房面积
  • 户主职业
  • 据城区距离

我们利用这些信息进行聚类,可识别相似家庭,从而能够识别某类型家庭可能购买某种产品或对某种类型的广告反应更好。

最常用的聚类算法就是k-means聚类算法,下面我们介绍k-means算法并通过示例进行说明。

k-means聚类算法把数据集中每个观测值分为K个类别。每个分类中的观测值相当类似,K类之间彼此差异较大。实际应用中执行下列几步实现k-means聚类算法:

1.确定K值

首先确定把数据集分为几类。通常我们简单测试几个不同值K,然后分析结果,确定那个值更有现实意义。

2.将每个观察结果随机分配到一个初始簇中,从1到K。

3.执行以下步骤,直到集群分配停止变化。

对于K个集群中的每一个,计算集群的质心。这仅仅是第k个簇中观测的p特征的向量。

将每个观测值分配到质心最近的簇中。在这里最接近的是用欧氏距离来定义的。

下面通过示例展示R的实现过程。

R 实现kmeans聚类算法

加载包

首先加载两个包,包括kmeans算法的一些辅助函数。

library(factoextra)
library(cluster)

加载示例数据

对于本例我们将使用R中内置的usarrest数据集,该数据集包含1973年美国每个州每10万居民因谋杀、袭击和强奸而被捕的人数,以及每个州居住在城市地区的人口百分比(UrbanPop)。

#load data
df <- USArrests

#remove rows with missing values
df <- na.omit(df)

#scale each variable to have a mean of 0 and sd of 1
df <- scale(df)

#view first six rows of dataset
head(df)

#                Murder   Assault   UrbanPop         Rape
# Alabama    1.24256408 0.7828393 -0.5209066 -0.003416473
# Alaska     0.50786248 1.1068225 -1.2117642  2.484202941
# Arizona    0.07163341 1.4788032  0.9989801  1.042878388
# Arkansas   0.23234938 0.2308680 -1.0735927 -0.184916602
# California 0.27826823 1.2628144  1.7589234  2.067820292
# Colorado   0.02571456 0.3988593  0.8608085  1.864967207

上面代码首先加载USArrests数据集,删除缺失值,对数据值进行标准化。

寻找最佳聚类数量

执行kmeans聚类算法,我们可以使用内置包stat中的kmeans()函数,语法如下:

kmeans(data, centers, nstart)

  • data : 数据集名称
  • centers: 聚类数量,即选择k的值
  • nstart: 初始配置个数。因为不同的初始启动集合可能会导致不同的结果,所以建议使用几种不同的初始配置。k-means算法将找到导致簇内变异最小的初始配置。

既然在使用kmeans函数之前并不确定最优聚类数量,下面通过两个图来辅助我们决定:

1.聚类数量 vs. 总体平方和

首先使用 fviz_nbclust 函数创建一个图,展示聚类数量及总体平方和之间的关系:

fviz_nbclust(df, kmeans, method = "wss")

通常我们创建这类图形寻找某个K类对应的平方和值开始弯曲或趋于平缓的肘形。这通常是最理想的聚类数量。上图中显然在k = 4个时出现肘形。

2.聚类数量 vs. 差距统计

另一个决定最佳聚类数量的是使用指标:差距统计。它用于比较不同k值聚类差距变化情况。使用cluster包中的clusGap()以及fviz_gap_stat()函数画图:

#calculate gap statistic based on number of clusters
gap_stat <- clusGap(df,
                    FUN = kmeans,
                    nstart = 25,
                    K.max = 10,
                    B = 50)

#plot number of clusters vs. gap statistic
fviz_gap_stat(gap_stat)

从上图可以看到k=4时,差距统计最大,这与前面图的结果一致。

使用最优k执行kmeans聚类

最后,我们执行kmeans函数,使用k=4作为最优值:

# 设置随机种子,让结果可以重现
set.seed(1)

# 调用kmeans聚类算法 k = 4
km <- kmeans(df, centers = 4, nstart = 25)

# 查看结果
km

# Show in New Window
# Clustering k = 1,2,..., K.max (= 10): .. done
# Bootstrapping, b = 1,2,..., B (= 50)  [one "." per sample]:
# .................................................. 50
# R Console
#
#
# Show in New Window
# K-means clustering with 4 clusters of sizes 13, 13, 16, 8
#
# Cluster means:
#       Murder    Assault   UrbanPop        Rape
# 1 -0.9615407 -1.1066010 -0.9301069 -0.96676331
# 2  0.6950701  1.0394414  0.7226370  1.27693964
# 3 -0.4894375 -0.3826001  0.5758298 -0.26165379
# 4  1.4118898  0.8743346 -0.8145211  0.01927104
#
# Clustering vector:
#        Alabama         Alaska        Arizona       Arkansas     California       Colorado
#              4              2              2              4              2              2
#    Connecticut       Delaware        Florida        Georgia         Hawaii          Idaho
#              3              3              2              4              3              1
#       Illinois        Indiana           Iowa         Kansas       Kentucky      Louisiana
#              2              3              1              3              1              4
#          Maine       Maryland  Massachusetts       Michigan      Minnesota    Mississippi
#              1              2              3              2              1              4
#       Missouri        Montana       Nebraska         Nevada  New Hampshire     New Jersey
#              2              1              1              2              1              3
#     New Mexico       New York North Carolina   North Dakota           Ohio       Oklahoma
#              2              2              4              1              3              3
#         Oregon   Pennsylvania   Rhode Island South Carolina   South Dakota      Tennessee
#              3              3              3              4              1              4
#          Texas           Utah        Vermont       Virginia     Washington  West Virginia
#              2              3              1              3              3              1
#      Wisconsin        Wyoming
#              1              3
#
# Within cluster sum of squares by cluster:
# [1] 11.952463 19.922437 16.212213  8.316061
#  (between_SS / total_SS =  71.2 %)
#
# Available components:
#
# [1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss"
# [6] "betweenss"    "size"         "iter"         "ifault"

从结果可见:

  • 16 州分在第一个类
  • 13 州分在第二个类
  • 13 州分在第三个类
  • 8 州分在第四个类

我们可以通过fviz_cluster()函数在二维空间中以散点图方式展示结果:

#plot results of final k-means model
fviz_cluster(km, data = df)

也可以使用aggregate()函数查看每个类中变量的均值:

#find means of each cluster
aggregate(USArrests, by=list(cluster=km$cluster), mean)

# cluster	  Murder   Assault	UrbanPop	    Rape
#
# 1	3.60000	  78.53846	52.07692	12.17692
# 2	10.81538 257.38462	76.00000	33.19231
# 3	5.65625	 138.87500	73.87500	18.78125
# 4	13.93750 243.62500	53.75000	21.41250

输出结果解释如下:

  • 在第一类中的州中平均每100,000人谋杀数为 3.6
  • 在第一类中的州中平均每100,000人袭击数为 78.5
  • 在第一类中的州中平均每100,000人城区居民率为 52.1%
  • 在第一类中的州中平均每100,000人强奸数为 3.6 12.2

最后我们把聚类结果附加到原始数据集中:

#add cluster assigment to original data
final_data <- cbind(USArrests, cluster = km$cluster)

#view final data
head(final_data)

# 	    Murder	Assault	UrbanPop  Rape	 cluster
#
# Alabama	    13.2	236	58	  21.2	 4
# Alaska	    10.0	263	48	  44.5	 2
# Arizona	     8.1	294	80	  31.0	 2
# Arkansas     8.8	190	50	  19.5	 4
# California   9.0	276	91	  40.6	 2
# Colorado     7.9	204	78	  38.7	 2

kmeans 算法的优缺点

优点:

很快的算法能够处理大数据集

缺点:

在执行算法之前需要指定聚类数量对异常值敏感 总结

本文我们讨论了kmeans算法的概念,并在R中给详细实现示例和步骤。

总结

到此这篇关于R语言实现KMeans聚类算法教程的文章就介绍到这了,更多相关R语言KMeans聚类算法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python Kmeans算法原理深入解析

    一. 概述 首先需要先介绍一下无监督学习,所谓无监督学习,就是训练样本中的标记信息是位置的,目标是通过对无标记训练样本的学习来揭示数据的内在性质以及规律.通俗得说,就是根据数据的一些内在性质,找出其内在的规律.而这一类算法,应用最为广泛的就是"聚类". 聚类算法可以对数据进行数据归约,即在尽可能保证数据完整的前提下,减少数据的量级,以便后续处理.也可以对聚类数据结果直接应用或分析. 而Kmeans 算法可以说是聚类算法里面较为基础的一种算法. 二. 从样例开始 我们现在在二维平面上有这

  • python实现kMeans算法

    聚类是一种无监督的学习,将相似的对象放到同一簇中,有点像是全自动分类,簇内的对象越相似,簇间的对象差别越大,则聚类效果越好. 1.k均值聚类算法 k均值聚类将数据分为k个簇,每个簇通过其质心,即簇中所有点的中心来描述.首先随机确定k个初始点作为质心,然后将数据集分配到距离最近的簇中.然后将每个簇的质心更新为所有数据集的平均值.然后再进行第二次划分数据集,直到聚类结果不再变化为止. 伪代码为 随机创建k个簇质心 当任意一个点的簇分配发生改变时:     对数据集中的每个数据点:         对

  • R语言实现KMeans聚类算法实例教程

    目录 什么是k-means聚类算法 R 实现kmeans聚类算法 加载包 加载示例数据 寻找最佳聚类数量 使用最优k执行kmeans聚类 kmeans 算法的优缺点 总结 本文和你一起学习无监督机器学习算法 ———— kmeans算法,并在R中给详细的实现示例和步骤. 什么是k-means聚类算法 聚类是从数据集中对观测值进行聚类的机器学习方法.它的目标是聚类相似观测值,不同类别之间差异较大.聚类是一种无监督学习方法,因为它仅尝试从数据集中发现结构,而不是预测应变量的值. 下面是一个市场营销中对

  • Python实现的KMeans聚类算法实例分析

    本文实例讲述了Python实现的KMeans聚类算法.分享给大家供大家参考,具体如下: 菜鸟一枚,编程初学者,最近想使用Python3实现几个简单的机器学习分析方法,记录一下自己的学习过程. 关于KMeans算法本身就不做介绍了,下面记录一下自己遇到的问题. 一 .关于初始聚类中心的选取 初始聚类中心的选择一般有: (1)随机选取 (2)随机选取样本中一个点作为中心点,在通过这个点选取距离其较大的点作为第二个中心点,以此类推. (3)使用层次聚类等算法更新出初始聚类中心 我一开始是使用numpy

  • Python实现Kmeans聚类算法

    本节内容:本节内容是根据上学期所上的模式识别课程的作业整理而来,第一道题目是Kmeans聚类算法,数据集是Iris(鸢尾花的数据集),分类数k是3,数据维数是4. 关于聚类 聚类算法是这样的一种算法:给定样本数据Sample,要求将样本Sample中相似的数据聚到一类.有了这个认识之后,就应该了解了聚类算法要干什么了吧.说白了,就是归类.     首先,我们需要考虑的是,如何衡量数据之间的相似程度?比如说,有一群说不同语言的人,我们一般是根据他们的方言来聚类的(当然,你也可以指定以身高来聚类).

  • 利用Python如何实现K-means聚类算法

    目录 前言 算法原理 目标函数 算法流程 Python实现 总结 前言 K-Means 是一种非常简单的聚类算法(聚类算法都属于无监督学习).给定固定数量的聚类和输入数据集,该算法试图将数据划分为聚类,使得聚类内部具有较高的相似性,聚类与聚类之间具有较低的相似性. 算法原理 1. 初始化聚类中心,或者在输入数据范围内随机选择,或者使用一些现有的训练样本(推荐) 2. 直到收敛 将每个数据点分配到最近的聚类.点与聚类中心之间的距离是通过欧几里德距离测量得到的. 通过将聚类中心的当前估计值设置为属于

  • 人工智能——K-Means聚类算法及Python实现

    目录 1 概述 1.1 无监督学习 1.2 聚类 1.3 K-Mean均值算法 2 K-Mean均值算法 2.1 引入 2.2 针对大样本集的改进算法:Mini Batch K-Means 2.3 图像 3 案例1 3.1 代码 3.2 结果 4 案例2 4.1 案例——数据 4.2 代码 4.3 结果 4.4 拓展&&改进 1 概述 1.1 无监督学习 在一个典型的监督学习中,我们有一个有标签的训练集,我们的目标是找到能够区分正样本和负样本的决策边界,在这里的监督学习中,我们有一系列标签

  • python中实现k-means聚类算法详解

    算法优缺点: 优点:容易实现 缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢 使用数据类型:数值型数据 算法思想 k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去. 1.首先我们需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的函数关系判断k为多少的时候效果最好.另一种则是根据具体的需求确定,比如说进行衬衫尺寸的聚

  • python实现k-means聚类算法

    k-means聚类算法 k-means是发现给定数据集的k个簇的算法,也就是将数据集聚合为k类的算法. 算法过程如下: 1)从N个文档随机选取K个文档作为质心 2)对剩余的每个文档测量其到每个质心的距离,并把它归到最近的质心的类,我们一般取欧几里得距离 3)重新计算已经得到的各个类的质心 4)迭代步骤(2).(3)直至新的质心与原质心相等或迭代次数大于指定阈值,算法结束 算法实现 随机初始化k个质心,用dict保存质心的值以及被聚类到该簇中的所有data. def initCent(dataSe

  • k-means 聚类算法与Python实现代码

    k-means 聚类算法思想先随机选择k个聚类中心,把集合里的元素与最近的聚类中心聚为一类,得到一次聚类,再把每一个类的均值作为新的聚类中心重新聚类,迭代n次得到最终结果分步解析 一.初始化聚类中心 首先随机选择集合里的一个元素作为第一个聚类中心放入容器,选择距离第一个聚类中心最远的一个元素作为第二个聚类中心放入容器,第三.四...N个同理,为了优化可以选择距离开方做为评判标准 二.迭代聚类 依次把集合里的元素与距离最近的聚类中心分为一类,放到对应该聚类中心的新的容器,一次聚类完成后求出新容器里

  • Python用K-means聚类算法进行客户分群的实现

    一.背景 1.项目描述 你拥有一个超市(Supermarket Mall).通过会员卡,你用有一些关于你的客户的基本数据,如客户ID,年龄,性别,年收入和消费分数. 消费分数是根据客户行为和购买数据等定义的参数分配给客户的. 问题陈述:你拥有这个商场.想要了解怎么样的顾客可以很容易地聚集在一起(目标顾客),以便可以给营销团队以灵感并相应地计划策略. 2.数据描述 字段名 描述 CustomerID 客户编号 Gender 性别 Age 年龄 Annual Income (k$) 年收入,单位为千

  • K-means聚类算法介绍与利用python实现的代码示例

    聚类 今天说K-means聚类算法,但是必须要先理解聚类和分类的区别,很多业务人员在日常分析时候不是很严谨,混为一谈,其实二者有本质的区别. 分类其实是从特定的数据中挖掘模式,作出判断的过程.比如Gmail邮箱里有垃圾邮件分类器,一开始的时候可能什么都不过滤,在日常使用过程中,我人工对于每一封邮件点选"垃圾"或"不是垃圾",过一段时间,Gmail就体现出一定的智能,能够自动过滤掉一些垃圾邮件了.这是因为在点选的过程中,其实是给每一条邮件打了一个"标签&qu

随机推荐