Python中的下划线详解

这篇文章讨论Python中下划线_的使用。跟Python中很多用法类似,下划线_的不同用法绝大部分(不全是)都是一种惯例约定。

一、 单个下划线直接做变量名(_)

主要有三种情况:

1. 解释器中

_符号是指交互解释器中最后一次执行语句的返回结果。这种用法最初出现在CPython解释器中,其他解释器后来也都跟进了。

代码如下:

>>> _
Traceback (most recent call last):
  File "", line 1, in
NameError: name '_' is not defined
>>> 42
>>> _
>>> 'alright!' if _ else ':('
'alright!'
>>> _
'alright!'

2. 作为名称使用

这个跟上面有点类似。_用作被丢弃的名称。按照惯例,这样做可以让阅读你代码的人知道,这是个不会被使用的特定名称。举个例子,你可能无所谓一个循环计数的值:

代码如下:

n = 42
for _ in range(n):
    do_something()

3. i18n

_还可以被用作函数名。这种情况,单下划线经常被用作国际化和本地化字符串翻译查询的函数名。这种惯例好像起源于C语言。举个例子,在 Django documentation for translation中你可能会看到:

代码如下:

from django.utils.translation import ugettext as _
from django.http import HttpResponse

def my_view(request):
    output = _("Welcome to my site.")
    return HttpResponse(output)

第二种和第三种用法会引起冲突,所以在任意代码块中,如果使用了_作i18n翻译查询函数,就应该避免再用作被丢弃的变量名。

二、 单下划线前缀的名称(例如_shahriar)
以单下划线做前缀的名称指定了这个名称是“私有的”。在 有些 导入import * 的场景中,下一个使用你代码的人(或者你本人)会明白这个名称仅内部使用。Python documentation里面写道:

a name prefixed with an underscore (e.g. _spam) should be treated as a non-public part of the API (whether it is a function, a method or a data member). It should be considered an implementation detail and subject to change without notice.

之所以说在在 有些 import * 的场景,是因为导入时解释器确实对单下划线开头的名称做了处理。如果你这么写from <module/package> import *,任何以单下划线开头的名称都不会被导入,除非模块/包的__all__列表明确包含了这些名称。更多相关信息见““Importing * in Python”。

三、双下划线前缀的名称(例如__shahriar)

以双下划线做前缀的名称(特别是方法名)并不是一种惯例;它对解释器有特定含义。Python会改写这些名称,以免与子类中定义的名称产生冲突。Python documentation中提到,任何__spam这种形式(至少以两个下划线做开头,绝大部分都还有一个下划线做结尾)的标识符,都会文本上被替换为_classname__spam,其中classname是当前类名,并带上一个下划线做前缀。
看下面这个例子:

代码如下:

>>> class A(object):
...     def _internal_use(self):
...         pass
...     def __method_name(self):
...         pass
...
>>> dir(A())
['_A__method_name', ..., '_internal_use']

正如所料,_internal_use没有变化,但__method_name被改写成了_ClassName__method_name。现在创建一个A的子类B(这可不是个好名字),就不会轻易的覆盖掉A中的__method_name了:

代码如下:

>>> class C(object):
...     def __mine__(self):
...         pass
...
>>> dir(C)
... [..., '__mine__', ...]

还是不要这样写方法名,只让Python定义的特殊方法名使用这种惯例吧。

(0)

相关推荐

  • Python中的下划线详解

    这篇文章讨论Python中下划线_的使用.跟Python中很多用法类似,下划线_的不同用法绝大部分(不全是)都是一种惯例约定. 一. 单个下划线直接做变量名(_) 主要有三种情况: 1. 解释器中 _符号是指交互解释器中最后一次执行语句的返回结果.这种用法最初出现在CPython解释器中,其他解释器后来也都跟进了. 复制代码 代码如下: >>> _ Traceback (most recent call last):   File "", line 1, in Nam

  • Python五种下划线详解

    目录 1.后单下划线例如: data_ 2.前单下划线例如: _data 3.前双下划线例如: __data 4.前后双下划线: __data__ 5.单下划线例如: _ 总结 本来而言,这个问题网上很多资料,但是网上资料都是复制来复制去,很多话大家其实都不是很明白的,或者拿着官方文档翻译过来的,让人看的非常迷糊.今天我我通俗好懂表述解释下这几种情况 1.后单下划线例如: data_ 其实这种就是为了防止跟系统关键字重名了,比如 python 里是不是有个关键字 class 但是我也想用 cla

  • python中openpyxl库用法详解

    目录 一.读取数据 1.1 从工作簿中取得工作表 1.2 从表中取得单元格 1.3 从表中取得行和列 二.写入数据 2.1 创建Workbook对象来创建Excel文件并保存 2.2 案例分析一 :爬取数据并保存excel中 2.3 案例分析二: 操作单元格中内容样式并保存数据 2.4 案例分析三:将列表数据写入excel中 openpyxl模块是一个读写Excel 文档的Python库,openpyxl是一个比较综合的工具,能够同时读取和修改Excel文档. openpyxl.load_wor

  • python中 logging的使用详解

    日志是用来记录程序在运行过程中发生的状况,在程序开发过程中添加日志模块能够帮助我们了解程序运行过程中发生了哪些事件,这些事件也有轻重之分. 根据事件的轻重可分为以下几个级别: DEBUG: 详细信息,通常仅在诊断问题时才受到关注.整数level=10 INFO: 确认程序按预期工作.整数level=20 WARNING:出现了异常,但是不影响正常工作.整数level=30 ERROR:由于某些原因,程序 不能执行某些功能.整数level=40 CRITICAL:严重的错误,导致程序不能运行.整数

  • Python中的asyncio代码详解

    asyncio介绍 熟悉c#的同学可能知道,在c#中可以很方便的使用 async 和 await 来实现异步编程,那么在python中应该怎么做呢,其实python也支持异步编程,一般使用 asyncio 这个库,下面介绍下什么是 asyncio : asyncio 是用来编写 并发 代码的库,使用 async/await 语法. asyncio 被用作多个提供高性能 Python 异步框架的基础,包括网络和网站服务,数据库连接库,分布式任务队列等等. asyncio 往往是构建 IO 密集型和

  • python 中xpath爬虫实例详解

    案例一: 某套图网站,套图以封面形式展现在页面,需要依次点击套图,点击广告盘链接,最后到达百度网盘展示页面. 这一过程通过爬虫来实现,收集百度网盘地址和提取码,采用xpath爬虫技术 1.首先分析图片列表页,该页按照更新先后顺序暂时套图封面,查看HTML结构.每一组"li"对应一组套图.属性href后面即为套图的内页地址(即广告盘链接页).所以,我们先得获取列表页内所有的内页地址(即广告盘链接页) 代码如下: import requests 倒入requests库 from lxml

  • python中yield的用法详解——最简单,最清晰的解释

    首先我要吐槽一下,看程序的过程中遇见了yield这个关键字,然后百度的时候,发现没有一个能简单的让我懂的,讲起来真TM的都是头头是道,什么参数,什么传递的,还口口声声说自己的教程是最简单的,最浅显易懂的,我就想问没有有考虑过读者的感受. 接下来是正题: 首先,如果你还没有对yield有个初步分认识,那么你先把yield看做"return",这个是直观的,它首先是个return,普通的return是什么意思,就是在程序中返回某个值,返回之后程序就不再往下运行了.看做return之后再把它

  • python中的 zip函数详解及用法举例

    python中zip()函数用法举例 定义:zip([iterable, ...]) zip()是Python的一个内建函数,它接受一系列可迭代的对象作为参数,将对象中对应的元素打包成一个个tuple(元组),然后返回由这些tuples组成的list(列表).若传入参数的长度不等,则返回list的长度和参数中长度最短的对象相同.利用*号操作符,可以将list unzip(解压),看下面的例子就明白了: 示例1 x = [1, 2, 3] y = [4, 5, 6] z = [7, 8, 9] x

  • Python中logger日志模块详解

    1 logging模块简介 logging模块是Python内置的标准模块,主要用于输出运行日志,可以设置输出日志的等级.日志保存路径.日志文件回滚等:相比print,具备如下优点: 可以通过设置不同的日志等级,在release版本中只输出重要信息,而不必显示大量的调试信息: print将所有信息都输出到标准输出中,严重影响开发者从标准输出中查看其它数据:logging则可以由开发者决定将信息输出到什么地方,以及怎么输出: Logger从来不直接实例化,经常通过logging模块级方法(Modu

  • python中yield的用法详解

    首先我要吐槽一下,看程序的过程中遇见了yield这个关键字,然后百度的时候,发现没有一个能简单的让我懂的,讲起来真TM的都是头头是道,什么参数,什么传递的,还口口声声说自己的教程是最简单的,最浅显易懂的,我就想问没有有考虑过读者的感受. 接下来是正题: 首先,如果你还没有对yield有个初步分认识,那么你先把yield看做"return",这个是直观的,它首先是个return,普通的return是什么意思,就是在程序中返回某个值,返回之后程序就不再往下运行了.看做return之后再把它

随机推荐