pytorch tensor计算三通道均值方式

目录
  • tensor计算三通道均值
    • 第一种思路
  • Pytorch tensor的运算
    • tensor操作

tensor计算三通道均值

今天用pytorch处理图像时,涉及到了计算均值的问题,整理一下解决思路。

第一种思路

tensor转换为numpy再进行处理

import torch
import cv2
img = cv2.imread("image path")
tensor_img = torch.from_numpy((img[:, :, ::-1] / 255.0)[None, ...].transpose(0, 3, 1, 2)).cuda()
 
...
 
numpy_img = (tensor_img.detach().cpu().numpy().transpose(2, 3, 1, 0).squeeze() * 255)[:, :, ::-1]
 
ave_color = np.mean(numpy_img , axis=(0, 1))

如果图像里有0值,不想计入运算:

numpy_img[numpy_img == 0] = np.nan
ave_color = np.nanmean(numpy_img, axis=(0, 1))

由于tensor和numpy来回转换会消耗资源、性能。

又查了一番,直接在tensor中计算(非零均值计算)

reshape_tensor_img = tensor_img.view(tensor_img.size(0), tensor_img.size(1), -1)
ave_color = reshape_tensor_img.mean(2)
 
# mean value without 0
non_zero_img = reshape_tensor_img[reshape_tensor_img.nonzero(as_tuple=True)]
ave_color = non_zero_img.view(reshape_tensor_img.size(0), reshape_tensor_img.size(1), -1).mean(2)

计算完均值,想要加法运算的时候也会碰上一点维度上的麻烦,需要维度转换一下。

reshape_ave_color = ave_color.view(ave_color.size(0), ave_color.size(1), 1, 1)
add_img = tensor_img + reshape_ave_color

Pytorch tensor的运算

tensor操作

1. 新建

A、torch.Tensor(shape)/torch.FloatTensor(shape):随机初始化一个维度为shape的张量。

B、torch.randn(shape):用均值为0,方差为1的高斯分布初始化一个shape的张量。

C、torch.rand(shape):在区间[0,1]上均匀分布,初始化一个shape的张量。

2、Tensor的变换

A、view / reshape

两个用法差不多,都是用来改变一个张量的数据分布。

注:(2,-1)中的-1会自动计算剩下的维度。

B、squeeze / unsqueeze

第一个是用来压缩维度为1的张量,如(6,1,32,32).squeeze()之后就变为(6,32,32);第二个是用来增加一个维度。具体看实例如下:

注:squeeze中不带参数,是将所有维度为1的地方去掉,带参数是去指定维度为1的地方,若指定的维度不为1,则不变。

注:在指定的维度上插入一个大小为1的新维度。

C、expand / repeat

这两个都是进行数据的扩充操作,第一个是扩充到指定的维度大小,第二个函数的参数维度上扩充的倍数。一般结合上面2.B中的函数使用。

D、 t / transpose / permute

这三个函数用来数据维度之间的调整,第一个只能用于2D。

E、broadcasting机制

相当于自动完成了unsqueeze+expand的操作,但是相比节省内存空间。

通过broadcasting机制,张量可以直接和标量进行相加。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Pytorch Tensor基本数学运算详解

    1. 加法运算 示例代码: import torch # 这两个Tensor加减乘除会对b自动进行Broadcasting a = torch.rand(3, 4) b = torch.rand(4) c1 = a + b c2 = torch.add(a, b) print(c1.shape, c2.shape) print(torch.all(torch.eq(c1, c2))) 输出结果: torch.Size([3, 4]) torch.Size([3, 4]) tensor(1, dt

  • PyTorch中Tensor的数据统计示例

    张量范数:torch.norm(input, p=2) → float 返回输入张量 input 的 p 范数 举个例子: >>> import torch >>> a = torch.full([8], 1) >>> b = a.view(2, 4) >>> c = a.view(2, 2, 2) >>> a.norm(1), b.norm(1), c.norm(1) # 求 1- 范数 (tensor(8.),

  • Pytorch Tensor的统计属性实例讲解

    1. 范数 示例代码: import torch a = torch.full([8], 1) b = a.reshape([2, 4]) c = a.reshape([2, 2, 2]) # 求L1范数(所有元素绝对值求和) print(a.norm(1), b.norm(1), c.norm(1)) # 求L2范数(所有元素的平方和再开根号) print(a.norm(2), b.norm(2), c.norm(2)) # 在b的1号维度上求L1范数 print(b.norm(1, dim=

  • PyTorch中Tensor的数据类型和运算的使用

    在使用Tensor时,我们首先要掌握如何使用Tensor来定义不同数据类型的变量.Tensor时张量的英文,表示多维矩阵,和numpy对应,PyTorch中的Tensor可以和numpy的ndarray相互转换,唯一不同的是PyTorch可以在GPU上运行,而numpy的ndarray只能在cpu上运行. 常用的不同数据类型的Tensor,有32位的浮点型torch.FloatTensor,   64位浮点型 torch.DoubleTensor,   16位整形torch.ShortTenso

  • pytorch tensor计算三通道均值方式

    目录 tensor计算三通道均值 第一种思路 Pytorch tensor的运算 tensor操作 tensor计算三通道均值 今天用pytorch处理图像时,涉及到了计算均值的问题,整理一下解决思路. 第一种思路 tensor转换为numpy再进行处理 import torch import cv2 img = cv2.imread("image path") tensor_img = torch.from_numpy((img[:, :, ::-1] / 255.0)[None,

  • Python实现计算图像RGB均值方式

    要求 存在一个文件夹内有若干张图像,需要计算每张图片的RGB均值,并计算全部图像的RGB均值. 代码 # -*- coding: utf-8 -*- """ Created on Thu Nov 1 10:43:29 2018 @author: Administrator """ import os import cv2 import numpy as np path = 'C:/Users/Administrator/Desktop/rgb'

  • 在Pytorch中计算自己模型的FLOPs方式

    https://github.com/Lyken17/pytorch-OpCounter 安装方法很简单: pip install thop 基本用法: from torchvision.models import resnet50from thop import profile model = resnet50() flops, params = profile(model, input_size=(1, 3, 224,224)) 对自己的module进行特别的计算: class YourMo

  • pytorch中tensor张量数据类型的转化方式

    1.tensor张量与numpy相互转换 tensor ----->numpy import torch a=torch.ones([2,5]) tensor([[1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.]]) # ********************************** b=a.numpy() array([[1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.]], dtype=float32) numpy --

  • Pytorch Tensor 输出为txt和mat格式方式

    假设result1为tensor格式,首先将其化为array格式(注意只变成numpy还不行),之后存为txt和mat格式 import scipy.io as io result1 = np.array(result1) np.savetxt('npresult1.txt',result1) io.savemat('save.mat',{'result1':result1}) 以上这篇Pytorch Tensor 输出为txt和mat格式方式就是小编分享给大家的全部内容了,希望能给大家一个参考

  • 使用numpy.mean() 计算矩阵均值方式

    目录 numpy.mean计算矩阵均值 均值函数numpy.mean mean是numpy中常用的求均值函数 numpy.mean计算矩阵均值 计算矩阵的均值 >>> a = np.array([[1, 2], [3, 4]]) >>> np.mean(a) # 将上面二维矩阵的每个元素相加除以元素个数(求平均数) 2.5 >>> np.mean(a, axis=0) # axis=0,计算每一列的均值 array([ 2.,  3.]) >&g

  • pytorch 图像预处理之减去均值,除以方差的实例

    如下所示: #coding=gbk ''' GPU上面的环境变化太复杂,这里我直接给出在笔记本CPU上面的运行时间结果 由于方式3需要将tensor转换到GPU上面,这一过程很消耗时间,大概需要十秒,故而果断抛弃这样的做法 img (168, 300, 3) sub div in numpy,time 0.0110 sub div in torch.tensor,time 0.0070 sub div in torch.tensor with torchvision.transforms,tim

  • pytorch GAN伪造手写体mnist数据集方式

    一,mnist数据集 形如上图的数字手写体就是mnist数据集. 二,GAN原理(生成对抗网络) GAN网络一共由两部分组成:一个是伪造器(Generator,简称G),一个是判别器(Discrimniator,简称D) 一开始,G由服从某几个分布(如高斯分布)的噪音组成,生成的图片不断送给D判断是否正确,直到G生成的图片连D都判断以为是真的.D每一轮除了看过G生成的假图片以外,还要见数据集中的真图片,以前者和后者得到的损失函数值为依据更新D网络中的权值.因此G和D都在不停地更新权值.以下图为例

  • 使用pytorch完成kaggle猫狗图像识别方式

    kaggle是一个为开发商和数据科学家提供举办机器学习竞赛.托管数据库.编写和分享代码的平台,在这上面有非常多的好项目.好资源可供机器学习.深度学习爱好者学习之用. 碰巧最近入门了一门非常的深度学习框架:pytorch,所以今天我和大家一起用pytorch实现一个图像识别领域的入门项目:猫狗图像识别. 深度学习的基础就是数据,咱们先从数据谈起.此次使用的猫狗分类图像一共25000张,猫狗分别有12500张,我们先来简单的瞅瞅都是一些什么图片. 我们从下载文件里可以看到有两个文件夹:train和t

  • Pytorch Tensor的索引与切片例子

    1. Pytorch风格的索引 根据Tensor的shape,从前往后索引,依次在每个维度上做索引. 示例代码: import torch a = torch.rand(4, 3, 28, 28) print(a[0].shape) #取到第一个维度 print(a[0, 0].shape) # 取到二个维度 print(a[1, 2, 2, 4]) # 具体到某个元素 上述代码创建了一个shape=[4, 3, 28, 28]的Tensor,我们可以理解为4张图片,每张图片有3个通道,每个通道

随机推荐