C++数据结构二叉搜索树的实现应用与分析
目录
- 概念
- 二叉搜索树的实现
相关推荐
-
C++实现LeetCode(109.将有序链表转为二叉搜索树)
[LeetCode] 109.Convert Sorted List to Binary Search Tree 将有序链表转为二叉搜索树 Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST. For this problem, a height-balanced binary tree is defined as a binary
-
C++实现LeetCode(99.复原二叉搜索树)
[LeetCode] 99. Recover Binary Search Tree 复原二叉搜索树 Two elements of a binary search tree (BST) are swapped by mistake. Recover the tree without changing its structure. Example 1: Input: [1,3,null,null,2] 1 / 3 \ 2 Output: [3,1,null,null,2] 3 / 1
-
C++实现LeetCode(95.独一无二的二叉搜索树之二)
[LeetCode] 95. Unique Binary Search Trees II 独一无二的二叉搜索树之二 Given an integer n, generate all structurally unique BST's (binary search trees) that store values 1 ... n. Example: Input: 3 Output: [ [1,null,3,2], [3,2,null,1], [3,1,null,null,2], [2,1,3],
-
C++实现LeetCode(96.独一无二的二叉搜索树)
[LeetCode] 96. Unique Binary Search Trees 独一无二的二叉搜索树 Given n, how many structurally unique BST's (binary search trees) that store values 1 ... n? Example: Input: 3 Output: 5 Explanation: Given n = 3, there are a total of 5 unique BST's: 1 3
-
C++实现LeetCode(108.将有序数组转为二叉搜索树)
[LeetCode] 108.Convert Sorted Array to Binary Search Tree 将有序数组转为二叉搜索树 Given an array where elements are sorted in ascending order, convert it to a height balanced BST. For this problem, a height-balanced binary tree is defined as a binary tree in wh
-
C++实现LeetCode(173.二叉搜索树迭代器)
[LeetCode] 173.Binary Search Tree Iterator 二叉搜索树迭代器 Implement an iterator over a binary search tree (BST). Your iterator will be initialized with the root node of a BST. Calling next() will return the next smallest number in the BST. Note: next() and
-
C++实现LeetCode(98.验证二叉搜索树)
[LeetCode] 98. Validate Binary Search Tree 验证二叉搜索树 Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as follows: The left subtree of a node contains only nodes with keys less than the node's key. The ri
-
C++ 二叉搜索树(BST)的实现方法
废话不多说了,直接给大家贴代码了,具体代码如下所示: class BST { public: struct Node { int key;//节点的key int value;//节点的value Node* left; Node *right; int N;//节点的叶子节点数目 Node(int _key, int _value, int _N) { key = _key; value = _value; N = _N; } }; BST(); ~BST(); void put(int ke
-
C++数据结构二叉搜索树的实现应用与分析
目录 概念 二叉搜索树的实现
-
Java深入了解数据结构之二叉搜索树增 插 删 创详解
目录 ①概念 ②操作-查找 ③操作-插入 ④操作-删除 1. cur.left == null 2. cur.right == null 3. cur.left != null && cur.right != null ⑤性能分析 ⑥完整代码 ①概念 二叉搜索树又称二叉排序树,它或者是一棵空树**,或者是具有以下性质的二叉树: 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值 它的左右子树也分别为二叉搜索树 ②操作-查找
-
Java数据结构超详细分析二叉搜索树
目录 1.搜索树的概念 2.二叉搜索树的简单实现 2.1查找 2.2插入 2.3删除 2.4修改 3.二叉搜索树的性能 1.搜索树的概念 二叉搜索树是一种特殊的二叉树,又称二叉查找树,二叉排序树,它有几个特点: 如果左子树存在,则左子树每个结点的值均小于根结点的值. 如果右子树存在,则右子树每个结点的值均大于根结点的值. 中序遍历二叉搜索树,得到的序列是依次递增的. 二叉搜索树的左右子树均为二叉搜索树. 二叉搜索树的结点的值不能发生重复. 2.二叉搜索树的简单实现 我们来简单实现以下搜索树,就不
-
Java数据结构之二叉搜索树详解
目录 前言 性质 实现 节点结构 初始化 插入节点 查找节点 删除节点 最后 前言 今天leetcode的每日一题450是关于删除二叉搜索树节点的,题目要求删除指定值的节点,并且需要保证二叉搜索树性质不变,做完之后,我觉得这道题将二叉搜索树特性凸显的很好,首先需要查找指定节点,然后删除节点并且保持二叉搜索树性质不变,就想利用这个题目讲讲二叉搜索树. 二叉搜索树作为一个经典的数据结构,具有链表的快速插入与删除的特点,同时查询效率也很优秀,所以应用十分广泛,例如在文件系统和数据库系统一般会采用这种数
-
C++数据结构之二叉搜索树的实现详解
目录 前言 介绍 实现 节点的实现 二叉搜索树的查找 二叉搜索树的插入 二叉搜索树的删除 总结 前言 今天我们来学一个新的数据结构:二叉搜索树. 介绍 二叉搜索树也称作二叉排序树,它具有以下性质: 非空左子树的所有键值小于其根节点的键值 非空右子树的所有键值大于其根节点的键值 左,右子树都是二叉搜索树 那么我先画一个二叉搜索树给大家看看,是不是真的满足上面的性质. 我们就以根节点6为例子来看,我们会发现比6小的都在6的左边,而比6大的都在6的右边.对于6的左右子树来说,所有的节点都遵循这个规则.
-
javascript数据结构之二叉搜索树实现方法
本文实例讲述了javascript二叉搜索树实现方法.分享给大家供大家参考,具体如下: 二叉搜索树:顾名思义,树上每个节点最多只有二根分叉:而且左分叉节点的值 < 右分叉节点的值 . 特点:插入节点.找最大/最小节点.节点值排序 非常方便 二叉搜索树-javascript实现 <script type="text/javascript"> // <