详解运行Python的神器Jupyter Notebook

Jupyter Notebook

Jupyter项目是从Ipython项目中分出去的,在Ipython3.x之前,他们两个是在一起发布的。在Ipython4.x之后,Jupyter作为一个单独的项目进行开发和管理。因为Jupyter不仅仅可以运行Python程序,它还可以执行其他流程编程语言的运行。

Jupyter Notebook包括三个部分,第一个部分是一个web应用程序,提供交互式界面,可以在交互式界面中运行相应的代码。

上图是NoteBook的交互界面,我们可以对文档进行编辑,运行等操作。

主要的功能如下:

  • 在浏览器中进行代码编辑,自动语法突出显示,缩进和制表符完成/自检功能。
  • 从浏览器执行代码的能力,并将计算结果附加到生成它们的代码上。
  • 使用诸如HTML,LaTeX,PNG,SVG等富媒体表示来显示计算结果。例如,可以内嵌包含matplotlib库渲染的具有出版质量的图形。
  • 使用Markdown标记语言在浏览器中对富文本进行的编辑(可以为代码提供注释)不仅限于纯文本。
  • 使用LaTeX轻松在markdown单元中包含数学符号的能力,并由MathJax本地呈现。

第二个部分就是NoteBook的文档了,这个文档存储了要运行的代码和一些描述信息。一般这个文档是以.ipynb的后缀进行存储的。

notebook文档是以json的形式存储的,并用base64进行编码。使用json的好处就是可以在不同的服务器中方便的进行数据的交互。

Notebook documents中除了可运行的代码文件,还可以存储说明等解释性内容,从而将代码和解释内容完美结合,尤其适合做学习笔记使用。

笔记本可以通过nbconvert命令导出为多种静态格式,包括HTML,reStructuredText,LaTeX,PDF等多种格式。

另外文档还可以方便的在网络上进行共享。

第三个部分就是代码运行的核心Kernels,通过不同的Kernels搭配,notebook可以支持运行多种程序。比如:Python,java,go,R,ruby,nodejs等等。

这些Kernels和notebook之间是以Json的形式通过MQ来进行通信的。

启动notebook server

有了文档之后,如果我们想要运行文档,需要启动notebook server。

jupyter notebook

默认情况下会开启下面的URL: http://127.0.0.1:8888

启动的时候还可指定要打开的.ipynb文件:

jupyter notebook my_notebook.ipynb

具体的notebook界面的操作这里就不多介绍了,基本上和普通的编译器差不多。大家可以自行探索。

notebook document 的结构

notebook中包含了多个cells,每个cell中包含了多行文本输入字段,可以通过Shift-Enter 或者工具栏中的播放按钮来执行其中的代码。

这里的cell有三种类型,分别是code cells,markdown cells和raw cells。

code cells

代码单元允许您编辑和编写新代码,并突出显示完整的语法和制表符。 您使用的编程语言取决于内核,默认内核(IPython)运行Python代码。

执行代码单元时,它包含的代码将发送到与笔记本关联的内核。 然后,从该计算返回的结果将在笔记本中显示为单元格的输出。 输出不仅限于文本,还有许多其他可能的输出形式,包括matplotlib图形和HTML表格(例如,在pandas数据分析包中使用的表格)。

我们看一个code cells的例子:

#%%

import numpy as np
my_arr = np.arange(1000000)
my_list = list(range(1000000))

每个单元格是以 #%% 来进行分隔的。

Ipython本身还支持多种富文本的展示格式,包括HTML,JSON,PNG,JPEG,SVG,LaTeX等。

Ipython提供了一个display方法,我们可以使用display来展示要呈现的对象:

from IPython.display import display

display(obj) 将会寻找这个对象所有可能的展示类型,并从中挑选一个最适合的类型进行展示,并将结果存储在Notebook文档里面。

如果你想展示特定类型的对象,那么可以这样:

from IPython.display import (
    display_pretty, display_html, display_jpeg,
    display_png, display_json, display_latex, display_svg
)

举个展示图片的例子:

from IPython.display import Image
i = Image(filename='../images/ipython_logo.png')
i
display(i)

上面的例子中i包含了一个Image对象,直接调用i即可展示,我们也可以显示的调用display(i)。

其他的富文本类型可以参考Image,使用方法都是类似的。

markdown cells

markdown是一种简介的标记语言,使用起来非常简单,使用范围非常广泛,所以notebook document也支持markdown的语法。

先看一个markdown cell的例子:

#%% md

```python
$ python
Python 3.6.0 | packaged by conda-forge | (default, Jan 13 2017, 23:17:12)
[GCC 4.8.2 20140120 (Red Hat 4.8.2-15)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> a = 5
>>> print(a)
5
```

markdown中的语法在notebook中都是可以用的。

还支持标准的LaTeX 和 AMS-LaTeX语法。

raw cells

原始单元格提供了一个可以直接写入输出的位置。 notebook不会对原始单元格中的内容进行计算。

以模块的形式导入Jupyter Notebooks

有时候我们希望以模块的形式导入Jupyter Notebooks,但是可惜的是,Jupyter Notebooks并不是一个标准的python程序,不过Python提供了一些钩子程序,让我们能够方便的进行导入。

首先,我们需要导入一些基本的API :

import io, os, sys, types

from IPython import get_ipython
from nbformat import read
from IPython.core.interactiveshell import InteractiveShell

接下来需要注册NotebookFinder到sys.meta_path:

sys.meta_path.append(NotebookFinder())

这个NotebookFinder就是定义的钩子。

我们看下NotebookFinder的定义:

class NotebookFinder(object):
    """Module finder that locates Jupyter Notebooks"""
    def __init__(self):
        self.loaders = {}

    def find_module(self, fullname, path=None):
        nb_path = find_notebook(fullname, path)
        if not nb_path:
            return

        key = path
        if path:
            # lists aren't hashable
            key = os.path.sep.join(path)

        if key not in self.loaders:
            self.loaders[key] = NotebookLoader(path)
        return self.loaders[key]

里面使用了两个重要的方法,find_notebook用来找到notebook,和NotebookLoader,用来加载notebook。

看下find_notebook的定义:

def find_notebook(fullname, path=None):
    """find a notebook, given its fully qualified name and an optional path

    This turns "foo.bar" into "foo/bar.ipynb"
    and tries turning "Foo_Bar" into "Foo Bar" if Foo_Bar
    does not exist.
    """
    name = fullname.rsplit('.', 1)[-1]
    if not path:
        path = ['']
    for d in path:
        nb_path = os.path.join(d, name + ".ipynb")
        if os.path.isfile(nb_path):
            return nb_path
        # let import Notebook_Name find "Notebook Name.ipynb"
        nb_path = nb_path.replace("_", " ")
        if os.path.isfile(nb_path):
            return nb_path

看下NotebookLoader的定义:

class NotebookLoader(object):
    """Module Loader for Jupyter Notebooks"""
    def __init__(self, path=None):
        self.shell = InteractiveShell.instance()
        self.path = path

    def load_module(self, fullname):
        """import a notebook as a module"""
        path = find_notebook(fullname, self.path)

        print ("importing Jupyter notebook from %s" % path)

        # load the notebook object
        with io.open(path, 'r', encoding='utf-8') as f:
            nb = read(f, 4)

        # create the module and add it to sys.modules
        # if name in sys.modules:
        #    return sys.modules[name]
        mod = types.ModuleType(fullname)
        mod.__file__ = path
        mod.__loader__ = self
        mod.__dict__['get_ipython'] = get_ipython
        sys.modules[fullname] = mod

        # extra work to ensure that magics that would affect the user_ns
        # actually affect the notebook module's ns
        save_user_ns = self.shell.user_ns
        self.shell.user_ns = mod.__dict__

        try:
          for cell in nb.cells:
            if cell.cell_type == 'code':
                # transform the input to executable Python
                code = self.shell.input_transformer_manager.transform_cell(cell.source)
                # run the code in themodule
                exec(code, mod.__dict__)
        finally:
            self.shell.user_ns = save_user_ns
        return mod

有了他们,我们就可以直接import我们自己编写的notebook了。

以上就是详解运行Python的神器Jupyter Notebook的详细内容,更多关于运行Python的神器Jupyter Notebook的资料请关注我们其它相关文章!

(0)

相关推荐

  • jupyter notebook参数化运行python方式

    Updates (2019.8.14 19:53)吃饭前用这个方法实战了一下,吃完回来一看好像不太行:跑完一组参数之后,到跑下一组参数时好像没有释放之占用的 GPU,于是 notebook 上的结果,后面好几条都报错说 cuda out of memory. 现在改成:将 notebook 中的代码写在一个 python 文件中,然后用命令行运行这个文件,比如: # autorun.py import os # print(os.getcwd()) over = [ # 之前手工改参数跑完的参数

  • windows python3安装Jupyter Notebooks教程

    Jupyter Notebooks 是什么? Jupyter Notebooks 是一款开源的网络应用,我们可以将其用于创建和共享代码与文档. 其提供了一个环境,你无需离开这个环境,就可以在其中编写你的代码.运行代码.查看输出.可视化数据并查看结果.因此,这是一款可执行端到端的数据科学工作流程的便捷工具,其中包括数据清理.统计建模.构建和训练机器学习模型.可视化数据等等,因为它们比单纯的 IDE 平台更具交互性,所以它们被广泛用于以更具教学性的方式展示代码. 准备工作: 1.windows 操作

  • Python使用jupyter notebook查看ipynb文件过程解析

    首先确保已安装jupyter notebook,而且添加到了环境变量 再找到保存ipynb文件的文件夹,在路径处直接输入cmd,然后回车 进入命令行窗口后,输入jupyter lab 然后浏览器就会打开 以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们.

  • Python安装Jupyter Notebook配置使用教程详解

    为什么要用Jupyter Notebook 推荐新手写python用什么编辑器就有有人问:为什么没有Jupyter Notebook.本来想数据分析和可视化的时候才介绍的,所以没有加上.最近要截图比较多,用Jupyter Notebook可以很好看到代码和结果. Jupyter Notebook是什么 Jupyter Notebook是一个开源的web应用程序,一个交互式笔记本,支持运行 40 多种编程语言.它允许您创建和共享文档,包含代码,方程,可视化和叙事文本.用途包括:数据清洗和转换,数值

  • ipython jupyter notebook中显示图像和数学公式实例

    1. # 可以使用LaTeX表示数学公式 # 可以使用LaTeX表示数学公式 from IPython.display import Latex Latex(r"$\sqrt{x^2+y^2}$") 2. # SymPy的表达式也可以显示为LaTex %load_ext sympyprinting from sympy import * x, y = symbols("x,y") sqrt(x**2+y**2) 3. # 用Image类显示"jupyter

  • Python学习工具jupyter notebook安装及用法解析

    1.jupyter notebook的安装 通过pip方式安装: pip install jupyter notebook 备注:安装前建议把pip升级到最新版本,不然在安装时可能会出现无法同步安装的问题,参考命令:pip3 install --upgrade pip 2.安装成功,即可通过命令启动jupyter notebook 3.创建文件 4.工具栏操作以及编辑运行代码 5.Markdownb编辑模式 添加标题,点开Cell下拉菜单中Cell Type 中Markdown,修改当前的单元格

  • 使用jupyter notebook运行python和R的步骤

    一个图形化的交互式运行环境,对于编程语言的学习和开发,特别是可视化方面,提供了极大的便利.比如在window上使用R语言进行绘图,在R语言自带的交互环境中,可以实时观测到代码的可视化效果,从而方便的进行参数调整. python语言基于命令行的交互式运行环境,可以方便的测试和运行简单代码,但是对于可视化的支持不是很友好,为此,有开发人眼开发出了ipython这一加强版的交互式运行环境,在ipython的基础上,又进一步打造出了jupyter notebook这一强大的交互式运行环境. jupyte

  • Python中Jupyter notebook快捷键总结

    1.命令模式(按Esc键): Enter:转入编辑模式 Shift-Enter:运行本单元,选中下个单元 Ctrl-Enter:运行本单元 Alt-Enter:运行本单元,在其下插入新单元 Y:单元转入代码状态 M:单元转入markdown状态 R:单元转入raw状态 2.编辑模式: Tab : 代码补全或缩进 Shift-Tab : 提示 Ctrl-] : 缩进 Ctrl-[ : 解除缩进 Ctrl-A : 全选 Ctrl-Z : 复原 Ctrl-Shift-Z : 再做 3.Jupyter

  • 如何实现更换Jupyter Notebook内核Python版本

    我使用anaconda安装的python3.6.3,并且自己建立一个虚拟环境,虚拟环境下的python版本也是3.6.3,Jupyter Notebook的内核P丫头好哦哦呢指向的是虚拟环境下的python,最近在使用matplotlib库的遇到了下面的问题: 我的lib目录下是有matplotlib以及相关的库的,重装什么的都试过,无奈实在是找不到解决的办法,于是想更换一下Jupyter Notebook的内核Python版本.接下来具体看一下如何更换内核Python版本. 1.首先在cmd下

  • 详解运行Python的神器Jupyter Notebook

    Jupyter Notebook Jupyter项目是从Ipython项目中分出去的,在Ipython3.x之前,他们两个是在一起发布的.在Ipython4.x之后,Jupyter作为一个单独的项目进行开发和管理.因为Jupyter不仅仅可以运行Python程序,它还可以执行其他流程编程语言的运行. Jupyter Notebook包括三个部分,第一个部分是一个web应用程序,提供交互式界面,可以在交互式界面中运行相应的代码. 上图是NoteBook的交互界面,我们可以对文档进行编辑,运行等操作

  • 详解修改Anaconda中的Jupyter Notebook默认工作路径的三种方式

    方式1. 打开Windows的cmd,在cmd中输入jupyter notebook --generate-config如下图: 可以看到路径为D:\Users--找到此路径修改jupyter_notebook_config.py文件 打开此文件找到 ## The directory to use for notebooks and kernels. #c.NotebookApp.notebook_dir = '' 将其改为 ## The directory to use for noteboo

  • 详解在Python中使用Torchmoji将文本转换为表情符号

    很难找到关于如何使用Python使用DeepMoji的教程.我已经尝试了几次,后来又出现了几次错误,于是决定使用替代版本:torchMoji. TorchMoji是DeepMoji的pyTorch实现,可以在这里找到:https://github.com/huggingface/torchMoji 事实上,我还没有找到一个关于如何将文本转换为表情符号的教程.如果你也没找到,那么本文就是一个了. 安装 这些代码并不完全是我的写的,源代码可以在这个链接上找到. pip3 install torch=

  • 详解使用Python+Pycaret进行异常检测

    目录 概述 介绍 为什么是PyCaret 学习目标 PyCaret安装 数据导入 探索性异常检测分析 Swarm图 箱形图 散点图 异常检测 模型创建 隔离森林 局部异常因子 K最近邻 比较模型中的异常 解释和可视化 尾注 概述 1.通过探索性异常检测分析了解异常 2.设置 PyCaret 环境并尝试准备任务的各种数据 3.比较性能并可视化不同的异常检测算法 介绍 异常检测提供了在数据中发现模式.偏差和异常的途径,这些模式.偏差和异常不限于模型的标准行为.异常检测旨在确定数据中的异常情况.这些异

  • 详解查看Python解释器路径的两种方式

    进入python的安装目录, 查看python解释器 进入bin目录 # ls python(看一下是否有python解释器版本) # pwd (查看当前目录) 复制当前目录即可 1. 通过脚本查看 运行以下脚本,或者进入交互模式手动输入即可. import sys import os print('当前 Python 解释器路径:') print(sys.executable) r""" 当前 Python 解释器路径: C:\Users\jpch89\AppData\Lo

  • 详解基于python的图像Gabor变换及特征提取

    1.前言 在深度学习出来之前,图像识别领域北有"Gabor帮主",南有"SIFT慕容小哥".目前,深度学习技术可以利用CNN网络和大数据样本搞事情,从而取替"Gabor帮主"和"SIFT慕容小哥"的江湖地位.但,在没有大数据和算力支撑的"乡村小镇"地带,或是对付"刁民小辈","Gabor帮主"可以大显身手,具有不可撼动的地位.IT武林中,有基于C++和OpenCV,或

  • 详解使用python爬取抖音app视频(appium可以操控手机)

    记录一下如何用python爬取app数据,本文以爬取抖音视频app为例. 编程工具:pycharm app抓包工具:mitmproxy app自动化工具:appium 运行环境:windows10 思路: 假设已经配置好我们所需要的工具 1.使用mitmproxy对手机app抓包获取我们想要的内容 2.利用appium自动化测试工具,驱动app模拟人的动作(滑动.点击等) 3.将1和2相结合达到自动化爬虫的效果 一.mitmproxy/mitmdump抓包 确保已经安装好了mitmproxy,并

  • 详解让Python性能起飞的15个技巧

    目录 前言 如何测量程序的执行时间 1.使用map()进行函数映射 2.使用set()求交集 3.使用sort()或sorted()排序 4.使用collections.Counter()计数 5.使用列表推导 6.使用join()连接字符串 7.使用x,y=y,x交换变量 8.使用while1取代whileTrue 9.使用装饰器缓存 10.减少点运算符(.)的使用 11.使用for循环取代while循环 12.使用Numba.jit加速计算 13.使用Numpy矢量化数组 14.使用in检查

  • 详解在Python中使用OpenCV进行直线检测

    目录 1.引言 2.霍夫变换 3.举个栗子 3.1读入图像进行灰度化 3.2执行边缘检测 3.3进行霍夫变换 补充 1. 引言 在图像处理中,直线检测是一种常见的算法,它通常获取n个边缘点的集合,并找到通过这些边缘点的直线.其中用于直线检测,最为流行的检测器是基于霍夫变换的直线检测技术. 2. 霍夫变换 霍夫变换是图像处理中的一种特征提取方法,可以识别图像中的几何形状.它将在参数空间内进行投票来决定其物体形状,通过检测累计结果找到一极大值所对应的解,利用此解即可得到一个符合特定形状的参数. 在使

  • 详解在Python中创建条形图追赶动画

    目录 前言 方法一:使用pause()函数 方法二:使用FuncAnimation()函数 线性图动画 Python中的条形图追赶动画 Python中的散点图动画: 条形图追赶的水平移动 前言 动画是使可视化更具吸引力和用户吸引力的好方法.它帮助我们以有意义的方式展示数据可视化.Python 帮助我们使用现有的强大 Python 库创建动画可视化.Matplotlib是一个非常流行的数据可视化库,通常用于数据的图形表示以及使用内置函数的动画. 使用 Matplotlib 创建动画有两种方法: 使

随机推荐