解决Python Matplotlib绘图数据点位置错乱问题

在绘制正负样本在各个特征维度上的CDF(累积分布)图时出现了以下问题:

问题具体表现为:

1.几个负样本的数据点位置倒错

2.X轴刻度变成了乱七八糟一团鬼东西

最终解决办法

造成上述情况的原因其实是由于输入matplotlib.plot()函数的数据x_data和y_data从CSV文件中直接导入后格式为string,因此才会导致所有数据点的x坐标都被直接刻在了x轴上,且由于坐标数据格式错误,部分点也就表现为“乱点”。解决办法就是导入x,y数据后先将其转化为float型数据,然后输入plot()函数,问题即解决。

补充知识:matplotlib如何在绘制时间序列时跳过无数据的区间

其实官方文档里就提供了方法,这里简单的翻译并记录一下.

11.1.9 Skip dates where there is no data
When plotting time series, e.g., financial time series, one often wants to leave out days on which there is no data, e.g., weekends.
By passing in dates on the x-xaxis, you get large horizontal gaps on periods when there is not data.

The solution is to pass in some proxy x-data, e.g., evenly sampled indices, and then use a custom formatter to format these as dates.
The example below shows how to use an ‘index formatter' to achieve the desired plot:

解决方案是通过传递x轴数据的代理,比如下标,

然后通过自定义的'formatter'去取到相对应的时间信息

manual内示例代码:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import matplotlib.ticker as ticker

#读数据
r = mlab.csv2rec('../data/aapl.csv')
r.sort()
r = r[-30:] # get the last 30 days
N = len(r)
ind = np.arange(N) # the evenly spaced plot indices
def format_date(x, pos=None):
 #保证下标不越界,很重要,越界会导致最终plot坐标轴label无显示
 thisind = np.clip(int(x+0.5), 0, N-1)
 return r.date[thisind].strftime('%Y-%m-%d')

fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.plot(ind, r.adj_close, 'o-')
ax.xaxis.set_major_formatter(ticker.FuncFormatter(format_date))
fig.autofmt_xdate()
plt.show()

示例:

同样一段数据上为原始,下为去掉无数据间隔区间

import pandas as PD
import numpy as NP
import matplotlib.pyplot as PLT
import matplotlib.ticker as MTK

file = r'vix_series.csv'
df = PD.read_csv(file, parse_dates=[0, 2])
#用下标代理原始时间戳数据
idx_pxy = NP.arange(df.shape[0])
#下标-时间转换func
def x_fmt_func(x, pos=None):
 idx = NP.clip(int(x+0.5), 0, df.shape[0]-1)
 return df['datetime'].iat[idx]
#绘图流程
def decorateAx(ax, xs, ys, x_func):
 ax.plot(xs, ys, color="green", linewidth=1, linestyle="-")
 ax.plot(ax.get_xlim(), [0,0], color="blue",
   linewidth=0.5, linestyle="--")
 if x_func:
  #set数据代理func
  ax.xaxis.set_major_formatter(MTK.FuncFormatter(x_func))
 ax.grid(True)
 return

fig = PLT.figure()
ax1 = fig.add_subplot(2,1,1)
ax2 = fig.add_subplot(2,1,2)
decorateAx(ax1, df['datetime'], df['vix_all'], None)
decorateAx(ax2, idx_pxy, df['vix_all'], x_fmt_func)
#优化label显示,非必须
fig.autofmt_xdate()
PLT.show()

很多时候乱翻google还不如好好通读官方manual…

以上这篇解决Python Matplotlib绘图数据点位置错乱问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 解决python中用matplotlib画多幅图时出现图形部分重叠的问题

    1.解决方法:使用函数 tight_layout() 2.具体使用方法 import matplotlib.pyplot as plt fig = plt.figure() ''' 具体的画图程序 ''' fig.tight_layout() fig.tight_layout() 功能:使得子图横纵坐标更加紧凑,主要用于自动调整图区的大小以及间距,使所有的绘图及其标题.坐标轴标签等都可以不重叠的完整显示在画布上. 参数: Pad:用于设置绘图区边缘与画布边缘的距离大小 w_pad:用于设置绘图区

  • Matplotlib中文乱码的3种解决方案

    前言 Matplotlib是一个Python 2D绘图库,它可以在各种平台上以各种硬拷贝格式和交互式环境生成出具有出版品质的图形. Matplotlib可用于Python脚本,Python和IPython shell,Jupyter笔记本,Web应用程序服务器和四个图形用户界面工具包. 然而最近在使用matplotlib默认情况会出现乱码问题,原则上matplotlib是支持中文的,只是在配置信息里没有中文字体的相关信息. 解决方法如下: 解决方案一:修改配置文件 matplotlib 从配置文

  • Python使用matplotlib绘图无法显示中文问题的解决方法

    本文实例讲述了Python使用matplotlib绘图无法显示中文问题的解决方法.分享给大家供大家参考,具体如下: 在python中,默认情况下是无法显示中文的,如下代码: import matplotlib.pyplot as plt # 定义文本框和箭头格式 decisionNode = dict(boxstyle = "sawtooth", fc = "0.8") leafNode = dict(boxstyle = "round4", f

  • Python matplotlib绘图可视化知识点整理(小结)

    无论你工作在什么项目上,IPython都是值得推荐的.利用ipython --pylab,可以进入PyLab模式,已经导入了matplotlib库与相关软件包(例如Numpy和Scipy),额可以直接使用相关库的功能. 本文作为学习过程中对matplotlib一些常用知识点的整理,方便查找. 这样IPython配置为使用你所指定的matplotlib GUI后端(TK/wxPython/PyQt/Mac OS X native/GTK).对于大部分用户而言,默认的后端就已经够用了.Pylab模式

  • 解决Python Matplotlib绘图数据点位置错乱问题

    在绘制正负样本在各个特征维度上的CDF(累积分布)图时出现了以下问题: 问题具体表现为: 1.几个负样本的数据点位置倒错 2.X轴刻度变成了乱七八糟一团鬼东西 最终解决办法 造成上述情况的原因其实是由于输入matplotlib.plot()函数的数据x_data和y_data从CSV文件中直接导入后格式为string,因此才会导致所有数据点的x坐标都被直接刻在了x轴上,且由于坐标数据格式错误,部分点也就表现为"乱点".解决办法就是导入x,y数据后先将其转化为float型数据,然后输入p

  • 完美解决Python matplotlib绘图时汉字显示不正常的问题

    Matplotlib是一个很好的作图软件,但是python下默认不支持中文,所以需要做一些修改,方法如下: 1.在python安装目录的Lib目录下创建ch.py文件. 文件中代码为: 保存,以后通过以下代码调用: #-*-coding:utf-8-*- #文件名: ch.py def set_ch(): from pylab import mpl mpl.rcParams['font.sans-serif'] = ['FangSong'] # 指定默认字体 mpl.rcParams['axes

  • python matplotlib 绘图 和 dpi对应关系详解

    我就废话不多说啦! dpi=1 600×400 dpi=2 1200×800 dpi=3 1800×1200 ........ dpi=21 (21×600)×(21×400) ---> 12600×8400 示例代码: ............... ............... plt_temp=y_axis plt_temp.resize(len(y_axis) , 1) plt_arr=np.concatenate((plt_arr,plt_temp ), axis=1) #print

  • Python matplotlib绘图设置图例案例

    目录 一.语法简介 二.完整代码 一.语法简介 plt.legend(loc=2,edgecolor='red',facecolor='green',shadow='True',fontsize=10) edgecolor 图例边框线颜色  facecolor 图例背景色 shadow 是否添加阴影  title 图例标题 fontsize 设置字体大小 ''' 设置图例位置loc参数简介 best         0  根据图标区域自动选择最合适的位置 upper right  1  右上角

  • Python Matplotlib绘图基础详细教程

    目录 1. 画图的基本步骤 1.1一步一步看 2.散点图 3.条形图的绘制 4.四幅子图的绘制 5.饼状图的绘制 6.热力图的绘制 总结 plt是最常用的接口 1. 画图的基本步骤 1.导入模块 import matplotlib as mpl import matplotlib.pyplot as plt 2.创建画板,然后对画板进行调整 3.定义数据 4.绘制图形(包含坐标轴的设置,数据的导入,线条的样式,颜色,还有标题,图例,等等) 5.plt.show() 1.1一步一步看 1.1.1*

  • Python matplotlib绘图时指定图像大小及放大图像详解

    matplotlib绘图时是默认的大小,有时候默认的大小会感觉图片里的内容都被压缩了,解决方法如下. 先是原始代码: from matplotlib import pyplot as plt plt.figure(figsize=(1,1)) x = [1,2,3] plt.plot(x, x) plt.show() 关键的代码是plt.figure(figsize=(1,1)),生成的图片如下 修改代码,放大图片: from matplotlib import pyplot as plt pl

  • 解决python matplotlib imshow无法显示的问题

    实例如下所示: import matplotlib.pyplot as plt plt.imshow(img) #控制台打印出图像对象的信息,而图像没有显示 解决方法: #引入pylab解决 import matplotlib.pyplot as plt import pylab plt.imshow(img) pylab.show() 以上这篇解决python matplotlib imshow无法显示的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • python matplotlib绘图,修改坐标轴刻度为文字的实例

    工作中偶尔需要做客流分析,用pyplot 库绘图.一般情况下, x 轴刻度默认显示为数字. 例如: 我希望x 轴刻度显示为星期日期. 查询pyplot 文档, 发现了 xtick() 函数可以修改刻度. 代码如下: import matplotlib.pyplot as plt import numpy as np #val_ls = [np.random.randint(100) + i*20 for i in range(7)] scale_ls = range(7) index_ls =

  • Python matplotlib绘图建立画布及坐标系

    目录 一.建立画布 二.用plt.subplot函数建立坐标系,并分别绘制折线图和柱状图 三.完整代码如下所示 四.对应效果图如下所示 一.建立画布 import matplotlib.pyplot as plt import numpy as np x=np.arange(8) y=np.arange(8) print(x,y) #建立画布 figsize,它用width和height来控制画布的宽和高 plt.figure(figsize=(8,6),dpi=90) #facecolor='

随机推荐