python 绘制3D图案例分享
目录
- 1.散点图
- 代码
- 输入的数据格式
- 2.三维表面 surface
- 代码
- 输入的数据格式
- scatter + surface图形展示
- 3. 三维瀑布图waterfall
- 代码
- 输入的数据格式
- 4. 3d wireframe
- code
- 输入的数据格式
1.散点图
代码
# This import registers the 3D projection, but is otherwise unused. from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import import matplotlib.pyplot as plt import numpy as np # Fixing random state for reproducibility np.random.seed(19680801) def randrange(n, vmin, vmax): ''' Helper function to make an array of random numbers having shape (n, ) with each number distributed Uniform(vmin, vmax). ''' return (vmax - vmin)*np.random.rand(n) + vmin fig = plt.figure() ax = fig.add_subplot(111, projection='3d') n = 100 # For each set of style and range settings, plot n random points in the box # defined by x in [23, 32], y in [0, 100], z in [zlow, zhigh]. for m, zlow, zhigh in [('o', -50, -25), ('^', -30, -5)]: xs = randrange(n, 23, 32) ys = randrange(n, 0, 100) zs = randrange(n, zlow, zhigh) ax.scatter(xs, ys, zs, marker=m) ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') plt.show()
输出:
输入的数据格式
这个输入的三个维度要求是三列长度一致的数据,可以理解为3个length相等的list。
用上面的scatter或者下面这段直接plot也可以。
fig = plt.figure() ax = fig.gca(projection='3d') ax.plot(h, z, t, '.', alpha=0.5) plt.show()
输出:
2.三维表面 surface
代码
x = [12.7, 12.8, 12.9] y = [1, 2, 3, 4] temp = pd.DataFrame([[7,7,9,9],[2,3,4,5],[1,6,8,7]]).T X,Y = np.meshgrid(x,y) # 形成网格化的数据 temp = np.array(temp) fig = plt.figure(figsize=(16, 16)) ax = fig.gca(projection='3d') ax.plot_surface(Y,X,temp,rcount=1, cmap=cm.plasma, linewidth=1, antialiased=False,alpha=0.5) #cm.plasma ax.set_xlabel('zone', color='b', fontsize=20) ax.set_ylabel('h2o', color='g', fontsize=20) ax.set_zlabel('Temperature', color='r', fontsize=20)
output:
输入的数据格式
这里x和y原本都是一维list,通过np.meshgrid可以将其形成4X3的二维数据,如下图所示:
而第三维,得是4X3的2维的数据,才能进行画图
scatter + surface图形展示
3. 三维瀑布图waterfall
代码
from matplotlib.collections import PolyCollection import matplotlib.pyplot as plt from matplotlib import colors as mcolors import numpy as np axes=plt.axes(projection="3d") def colors(arg): return mcolors.to_rgba(arg, alpha=0.6) verts = [] z1 = [1, 2, 3, 4] x1 = np.arange(0, 10, 0.4) for z in z1: y1 = np.random.rand(len(x1)) y1[0], y1[-1] = 0, 0 verts.append(list(zip(x1, y1))) # print(verts) poly = PolyCollection(verts, facecolors=[colors('r'), colors('g'), colors('b'), colors('y')]) poly.set_alpha(0.7) axes.add_collection3d(poly, zs=z1, zdir='y') axes.set_xlabel('X') axes.set_xlim3d(0, 10) axes.set_ylabel('Y') axes.set_ylim3d(-1, 4) axes.set_zlabel('Z') axes.set_zlim3d(0, 1) axes.set_title("3D Waterfall plot") plt.show()
输出:
输入的数据格式
这个的输入我还没有完全搞懂,导致我自己暂时不能复现到其他数据,等以后懂了再回来补充。
4. 3d wireframe
code
from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt fig, (ax1, ax2) = plt.subplots( 2, 1, figsize=(8, 12), subplot_kw={'projection': '3d'}) # Get the test data X, Y, Z = axes3d.get_test_data(0.05) # Give the first plot only wireframes of the type y = c ax1.plot_wireframe(X, Y, Z, rstride=10, cstride=0) ax1.set_title("Column (x) stride set to 0") # Give the second plot only wireframes of the type x = c ax2.plot_wireframe(X, Y, Z, rstride=0, cstride=10) ax2.set_title("Row (y) stride set to 0") plt.tight_layout() plt.show()
output:
输入的数据格式
与plot_surface的输入格式一样,X,Y原本为一维list,通过np.meshgrid形成网格化数据。Z为二维数据。其中注意调节rstride、cstride这两个值实现行列间隔的调整。
自己试了下:
到此这篇关于python 绘制3D图案例分享的文章就介绍到这了,更多相关python 绘制3D图内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
赞 (0)